

Rother District Local Plan 2025 - 2042

Density Study (2026 Update)

Draft (Regulation 18) Version. January 2026

www.rother.gov.uk

This information can be made available in large print, audio or in another language upon request.

Please telephone **01424 787668** or email
planning.strategy@rother.gov.uk

Contents

1	Executive Summary	6
	Status and purpose of this study.....	6
	Links to earlier work and methodology.....	6
	Key objectives	7
	Headline findings.....	7
	What this Density Study does and does not do	8
	Alignment with the Regulation 18 development strategy and site allocations.....	9
	Compact development delivers multiple co-benefits:.....	9
	Soundness and Compliance.....	10
2	Policy Context & Requirements.....	11
	National Policy and Guidance.....	11
	National Model Design Code (NMDC) – Indicative Density Ranges.....	13
	Regional and Local Evidence	13
	Application of National Design Guidance.....	13
3	Context and Continuity	15
	Relationship to Part 1 (Density Study 2024)	15
	Purpose of Part 2 (Density Study 2026)	15
4	Evidence Base and Methodology	17
	Definition of density	17
	Stage 1 baseline (2012–2022)	17
	Stage 2 approach (2026)	17
	Implications	18
	Section summary	18
5	Updated District Density Calibration (Observed).....	19
	Interpretation	19
6	Accessibility-Led Density Uplift Logic.....	20
	Definitions and benchmarks.....	20
	Conclusion	20
	Section summary	21
7	Design Typologies to Achieve Density with Amenity	22
	Core principles (apply across all types).....	22
	Village Typologies (25–45 dph)	22
	Contemporary lessons for Rother (Village contexts).....	23
	Live Well Locally Edge Typologies (35–55 dph).....	23

Contemporary lessons for Rother (Live Well Locally urban-edge)	23
Suburban Typologies (45–75 dph).....	24
Contemporary lessons for Rother (Suburban contexts).....	24
Urban Typologies (110–125+ dph)	25
Contemporary lessons for Rother (Selective urban application).....	25
Lessons from best practice	25
Section summary	26
8 Responding to Local Character	27
Within the High Weald National Landscape	27
Alignment with National Guidance	28
Outside the High Weald: Bexhill and Other Urban Areas.....	28
9 Historic Case Studies: Lessons from Rother	31
Examples of densities achieved	31
Key Cross-Cutting Lessons	34
Synthesis.....	34
Implications for Contemporary Density, Typologies and Garden Standards.....	34
Density and built form	35
Garden depth and private amenity.....	35
Frontage efficiency and public realm.....	36
Parking and layout.....	36
Relationship to Live Well Locally and Policy Application	37
Live Well Locally sites	37
Policy implications.....	37
Interpretation.....	38
Integration with modern guidance	38
10 Climate, Energy & Environmental Outcomes.....	39
11 Updated Density Ranges for Rother	40
Recommended ranges (Stage 2).....	40
Rationale for change since Stage 1	40
Relationship to site allocations.....	40
Applying density ranges within individual sites	40
12 Recommendations & Next Steps	42
Application in policy and decision-making	42
Further technical work.....	42
Relationship to viability and deliverability.....	42

Engagement and monitoring.....	42
Appendix 1: Density scales.....	44
Appendix 2: Contemporary Best Practice.....	45
Appendix 3: Historic Sites in Rother	60

1 Executive Summary

1.1 This Density Study provides the proportionate evidence base for applying design-led minimum density expectations in the Rother Local Plan (2025–2042), in line with the National Planning Policy Framework's requirements to make effective use of land and to avoid low-density development in well-connected locations. It follows on from the density study completed in 2024, responding to the dual challenge of meeting identified housing need and safeguarding local character and environmental quality.

Status and purpose of this study

1.2 The Study informs the Regulation 18 Site Allocations and Development Strategy consultation. It is intended to support the consideration of policy options and site capacities at this stage of plan-making. It does not predetermine detailed design outcomes for individual sites, which will be addressed through site-specific masterplanning, design codes, and the development management process.

Links to earlier work and methodology

1.3 Stage 1 (*Density Study 2024*) analysed large-site permissions over 1 April 2012–31 March 2022 and grouped Rother into five area types:

1. Urban Areas
2. Suburban Areas
3. Live Well Locally Areas (urban edge)
4. Village Areas
5. Countryside Areas

1.4 Tailored density expectations were derived from accessibility to shops, services and public transport, and opportunities to reuse previously developed land, consistent with the NPPF.

1.5 Stage 2 (*Density Study 2026*) builds on this foundation, testing whether the Stage 1 expectations remain appropriate and introducing a design-led perspective. This stage focuses on:

- Historic examples of compact development within Rother, showing that higher densities have long been compatible with rural and townscape character.
 - Contemporary best-practice case studies from across the UK with comparable conditions, demonstrating how to achieve density with amenity today.
- 1.6 Case studies were chosen in discussion with Development Management and Planning Policy & Placemaking to reflect local character and likely growth opportunities. They vary in size and complexity, allowing conclusions to address scale, layout and placemaking (see Appendix 3 – Historic Sites in Rother and Appendix 2 – Contemporary Best Practice).
- Key objectives**
- Establish density ranges by area type and accessibility tier.
 - Support site allocations with robust, design-aware evidence.
 - Align density policy with national guidance, local character, and infrastructure capacity.
- 1.7 The density ranges identified in this study are intended to operate as minimum, design-led starting points for site planning, rather than fixed or uniform targets, allowing flexibility to respond to site constraints, character, and infrastructure capacity.
- Headline findings**
- 1.8 Analysis confirms that higher densities are achievable where public transport and services are accessible. Recommended minimum density ranges by area type are:
- **Urban Areas:** 110–125 dph
 - **Suburban Areas:** 45–75 dph
 - **Live Well Locally Areas:** 35–55 dph
 - **Villages:** 25–45 dph
- 1.9 These are design-led starting points to be varied across a site to reflect character, constraints and accessibility tiers (see Section 11 & Appendix 1: Rother Density Scale).

- 1.10 The study does not propose minimum density standards for development in the countryside, where growth is tightly constrained by national and local policy and assessed on a case-by-case basis.
- 1.11 These ranges apply an accessibility-led uplift logic: locations within approximately 400–800 m of frequent bus services and up to 1,600 m of rail stations are prioritised for higher densities, consistent with national guidance on walkable neighbourhoods and sustainable transport.
- 1.12 The study supports Policy LWL1 and site allocation policies in the Regulation 18 Draft Local Plan.

What this Density Study does and does not do

- 1.13 This study is intended to support plan-making at Regulation 18 stage by setting out evidence-based minimum density expectations. It:
 - ✓ Establishes minimum, design-led density expectations by area type and accessibility.
 - ✓ Informs indicative site capacities and policy options in the Draft Local Plan.
 - ✓ Demonstrates, through historic and contemporary examples, that higher densities can be achieved with good design and amenity.
- 1.14 The study does **not**:
 - ✗ Fix site layouts, building heights, or dwelling numbers.
 - ✗ Remove the need to respond to site-specific constraints such as landscape, heritage, flood risk, ecology, or infrastructure capacity.
 - ✗ Replace the role of masterplanning, design codes, or the development management process.
- 1.15 Detailed design outcomes will be determined through site-specific masterplans, design codes, and planning applications.

Alignment with the Regulation 18 development strategy and site allocations

- **Responding to housing need and optimising land use.** Rother's Local Housing Need, as calculated using the Government's Standard Method, is 912 dwellings per year (15,504 homes across the 17-year Plan Period), in a district where 83% lies within the High Weald National Landscape (HWNL) and a further 7% is nationally or internationally protected for habitat value. Optimising density, within the bounds of good design and character, is necessary to use land efficiently (NPPF).
- **Supporting Policy LWL1 and the preferred density approach.** Evidence includes Stage 1 analysis (2012–2022), an accessibility-led uplift logic, and typologies that can achieve the proposed densities while maintaining amenity and character.
- **Informing capacity figures.** Capacity assumptions rely on consistent net developable area calculations and area-type density ranges aligned with accessibility.
- **Embedding design quality and local character.** The study supports a landscape-led approach, tailored typologies for rural and edge-of-settlement contexts, variation of density across larger sites (denser near hubs/centres; lower at edges), and integration of the High Weald Housing Design Guide.
- **Aligning with infrastructure and sustainability.** Compact, walkable development supports bus viability, active travel, green/blue infrastructure, climate resilience and biodiversity net gain.

Compact development delivers multiple co-benefits:

- **Transport:** Supports bus viability and active travel, reducing car dependency.
- **Climate:** Lowers carbon emissions through energy-efficient built form and reduced trip lengths.
- **Nature & Water:** Enables integrated SuDS, biodiversity net gain, and urban greening.
- **Health & Wellbeing:** Creates walkable neighbourhoods with accessible green spaces and sociable public realm.

1.16 Implementation will be supported through strategic masterplans and design codes for major allocations, ensuring that recommended density ranges are translated into

high-quality placemaking outcomes consistent with the National Model Design Code (NMDC).

- 1.17 This study provides the evidence base to support key Local Plan policies, including Policy **LWL1** (minimum density standards), Policy **BX1** (Bexhill Urban Area – higher densities), Growth Area policies requiring masterplanning and design coding (West and North Bexhill), and site allocation specific design and capacity principles.

Soundness and Compliance

- 1.18 This Density Study provides proportionate, robust evidence to support the Local Plan's compliance with the tests of soundness set out in NPPF (2024) paragraph 36:
- **Positively Prepared:** Responds to identified Local Housing Need (912 dwellings per year) by optimising land use within environmental constraints, ensuring sufficient capacity while safeguarding the High Weald National Landscape and other protected areas.
 - **Justified:** Based on a clear evidence base combining historic precedent, observed delivery, accessibility analysis, and contemporary best practice, supported by national guidance (NPPF, NDG, NMDC).
 - **Effective:** Provides practical density ranges, typologies, and design principles that can be implemented through site allocations, masterplans, and design codes, ensuring deliverability across the plan period. The study also establishes a clear framework for implementation, monitoring, and adjustment, ensuring that density policies remain effective and responsive over the plan period.
 - **Consistent with National Policy:** Aligns with NPPF requirements for efficient land use and design quality, and applies NDG and NMDC principles to achieve compact, walkable development integrated with local character and infrastructure capacity.

2 Policy Context & Requirements

National Policy and Guidance

2.1 The National Planning Policy Framework (NPPF, 2024) reinforces the principle of efficient land use, particularly in areas facing housing pressures. Key provisions include:

- **Paragraph 124:** Planning policies and decisions should promote an effective use of land in meeting the need for homes and other uses, while safeguarding and improving the environment and ensuring safe and healthy living conditions. (NPPF, Dec 2024).
- **Paragraph 125(d):** Promote and support the development of under-utilised land and buildings, especially if this would help to meet identified needs for housing where land supply is constrained and available sites could be used more effectively... (NPPF, Dec 2024).
- **Paragraph 130:** Where there is an existing or anticipated shortage of land for meeting identified housing needs, it is especially important that planning policies and decisions avoid homes being built at low densities, and ensure that developments make optimal use of the potential of each site. In these circumstances:
 - (a) plans should contain policies to optimise the use of land...and should include the use of minimum density standards for city and town centres and other locations that are well served by public transport. These standards should seek a significant uplift in the average density of residential development within these areas, unless it can be shown that there are strong reasons why this would be inappropriate;
 - (b) the use of minimum density standards should also be considered for other parts of the plan area. It may be appropriate to set out a range of densities that reflect the accessibility and potential of different areas, rather than one broad density range; and
 - (c) local planning authorities should refuse applications which they consider fail to make efficient use of land... (NPPF, Dec 2024).

2.2 National policy also emphasises that planning policies should actively seek to make the most efficient use of land in meeting housing need, particularly in locations well served by public transport and local facilities. The NPPF is clear that minimum

density standards may be an appropriate tool in such locations, provided that they are applied in a way that supports good design and responds to local character.

- 2.3 The Planning Practice Guidance (PPG, 2025) complements the NPPF by setting out tools (PPG: Effective use of land, Ref ID 66-004-20190722; updated 27 Feb 2025) to assess appropriate densities, including:
- Accessibility to services and public transport.
 - Local characterisation and design strategies.
 - Infrastructure and environmental capacity.
 - Market and site viability analysis.
- 2.4 While viability remains an important consideration in plan-making and decision-taking, national policy and guidance emphasise that it should not compromise the objective of making effective use of land and achieving well-designed places. In a district such as Rother, where land supply is constrained and housing affordability pressures are significant, optimising density plays an important role in supporting housing delivery and enabling a broader range of dwelling types and sizes.
- 2.5 At Regulation 18 stage, this study provides proportionate, design-led evidence to inform density expectations. More detailed viability testing will follow alongside site-specific masterplanning and policy refinement, ensuring that density, design quality, deliverability and affordable housing objectives are considered together.
- 2.6 The National Design Guide (NDG) supports innovation and increased densities where appropriate, stating:
“Well-designed places do not need to copy their surroundings in every way. It is appropriate to introduce elements that reflect how we live today, to include innovation or change such as increased densities, and to incorporate new sustainable features or systems.”
- 2.7 This reinforces that increased densities can be compatible with good design when integrated with local character and sustainability principles.

Key Facts:

- National policy requires efficient land use and supports design-led density uplift in sustainable locations.

- Minimum density standards are encouraged in well-connected areas to achieve meaningful increases in housing delivery.

National Model Design Code (NMDC) – Indicative Density Ranges

- 2.8 The NMDC provides illustrative benchmarks for common area types, which should be adapted to local context rather than applied prescriptively:
- **Town Centres:** Often >120 dwellings per hectare (dph), with some sources citing >200 dph; strong mix of uses.
 - **Urban Neighbourhoods:** 60–120 dph with a mix of uses.
 - **Suburbs:** Typically, 30–50 dph (other references cite 40–60 dph), with short terraces and semi-detached homes.
 - **Villages/Rural Settlements:** Informal layouts of 2–3 storeys, reflecting historic grain and landscape setting.

Regional and Local Evidence

- The Rother Local Plan Core Strategy focuses growth on Bexhill, Battle, and Rye.
- East Sussex Infrastructure Delivery Plans highlight capacity considerations (transport, schools, utilities) that influence where higher densities can be supported.
- Neighbourhood Plans contribute locally appropriate expectations.
- The North East Bexhill SPD (2009) sets enduring local benchmarks:
 - ~50 dph (higher), ~40 dph (medium), ~30 dph (lower), and establishes design expectations—flats/terraces in higher density areas and mixed house sizes within each band.

Application of National Design Guidance

- 2.9 This study applies the principles set out in the National Design Guide (NDG) and National Model Design Code (NMDC) to inform density decisions. NDG establishes ten characteristics of well-designed places, including compact built form, integration of nature, and identity, while NMDC provides coding parameters such as density ranges, block structure, street hierarchy, and green infrastructure standards. These frameworks underpin the approach taken in this study by ensuring

that density is delivered in a way that is context-sensitive, design-led, and aligned with national best practice. Their practical application appears in Section 8 (Responding to Local Character).

3 Context and Continuity

Relationship to Part 1 (Density Study 2024)

3.1 Part 1 established the baseline evidence for density in Rother, including:

- Observed delivery patterns (2012–2022) across five area types: Urban, Suburban, Urban Edge (now Live Well Locally), Village, and Countryside.
- A calibrated local density scale showing that historic and recent permissions often exceeded the former 30 dph benchmark, with Urban areas averaging ~94 dph and Suburban ~56 dph.
- Accessibility-led logic highlighting the need for minimum density standards in well-connected locations.
- Proposed density ranges for Policy LWL1, which introduced uplift for Urban, Suburban and Village area types and a new Live Well Locally (Urban Edge) category.
- Key considerations for future work, including amenity, public realm, and design quality.

Purpose of Part 2 (Density Study 2026)

3.2 This second stage builds on that foundation by:

- Testing and refining the proposed ranges from Part 1 against design-led principles and accessibility tiers.
- Introducing historic precedent analysis to demonstrate that compact forms (25–55 dph) are consistent with local character.
- Reviewing contemporary best practice typologies to show how higher densities can be achieved with amenity and placemaking.
- Applying National Design Guide (NDG) and National Model Design Code (NMDC) principles to ensure alignment with national policy and design quality frameworks.
- Addressing amenity, green infrastructure, and public realm integration, which Part 1 flagged as critical for delivery.
- Linking density strategy to climate resilience, transport viability, and biodiversity net gain, reinforcing Local Plan objectives.

- Outlining implementation tools (design codes, masterplans) and monitoring mechanisms to secure delivery.
- 3.3 Together, Part 1 and Part 2 provide a comprehensive evidence base for minimum density expectations, ensuring they are justified, effective, and consistent with national policy, while safeguarding the distinctive character of the High Weald National Landscape and supporting design-led responses to the established character and coastal townscape of Bexhill, the district's primary urban area.

4 Evidence Base and Methodology

Definition of density

- 4.1 Unless otherwise stated, all density figures in this study are expressed as net residential density, calculated using the net developable residential area. Net developable areas exclude primary distributor roads, strategic landscaping, structural open space, schools, employment land, and other non-residential uses, but include residential streets, local open space, and shared amenity areas serving housing.
- 4.2 The evidence base combines quantitative analysis with qualitative design review, building on Stage 1 and adding new strands for Stage 2.

Stage 1 baseline (2012–2022)

- 4.3 The Stage 1 review of large-site permissions identified substantial variation by area type. Urban and Suburban sites achieved higher densities (averaging ~94 dph and ~56 dph), while Urban edge and Village sites delivered lower figures (around ~21–25 dph), below the historic PPG3 benchmark of 30 dph. These patterns indicate where uplift potential is greatest.

Stage 2 approach (2026)

- 4.4 Stage 2 tests the appropriateness of Stage 1 expectations and introduces a design-led perspective:
 1. **Historic precedent review.** Representative streets and blocks across Rother were analysed for net density, height, proportion of terraced housing, garden depths, and frontage rhythm. These show that 25–55 dph has historically been compatible with settlement character in the High Weald.
 2. **Contemporary best-practice case studies.** Award-winning schemes in comparable UK contexts were assessed for layout, public realm, private amenity, mobility and parking, net density, parking ratios, % own-door homes, height ranges, garden sizes, composition, and housing mix. They illustrate how modern design delivers density with amenity.
 3. **Housing needs evidence (HEDNA, 2024).** Demand in the district is strongest for 2–3-bedroom dwellings with significant need for 1-bedroom homes. Demographic drivers include an ageing population, smaller

households, and affordability pressures. This supports a shift toward compact, mixed communities.

4. **Accessibility analysis.** Walking thresholds commonly used in planning, ~400–800 m to bus stops and up to ~1,600 m to rail stations, inform an accessibility-tiered approach to density. Guidance indicating ~40–45 dph in bus-served corridors supports concentrating uplift where public transport access is strongest.

Implications

- 4.5 Higher densities are achievable without loss of quality, especially in accessible locations. Historic and contemporary examples provide clear design principles. Updated ranges should reflect accessibility, housing need and character, supported by typologies that integrate public realm, green infrastructure and sustainable mobility.

Section summary

- 4.6 The combined Stage 1 and Stage 2 evidence demonstrates that higher densities are already being delivered in accessible locations across Rother and that further uplift is achievable through design-led approaches. Historic precedent and contemporary best practice confirm that density can be increased without loss of amenity or character when supported by appropriate typologies, accessibility, and placemaking principles.

5 Updated District Density Calibration (Observed)

5.1 Stage 1 found a district-wide average of **~25 dph** across large sites, which is below the former 30 dph reference, but this masks variation:

- **Urban:** ~94 dph
- **Suburban:** ~56 dph
- **Urban edge:** ~21 dph
- **Villages:** ~25 dph

Interpretation

5.2 Urban and Suburban contexts already demonstrate capacity for above-average densities. Urban edge and Village locations underperformed relative to potential and represent the principal opportunity for uplift when design quality and landscape integration are addressed.

6 Accessibility-Led Density Uplift Logic

Definitions and benchmarks.

- **Accessibility** (NMDC): the ability of people, including older and disabled people, those with young children and those carrying luggage or shopping, to move around an area and reach facilities.
- **Compact form** (NMDC): development planned with relatively high residential density and a coherent, street-based layout, where facilities are closer together, open landscape is preserved, and land and resources are used efficiently.
- **Walkable** (NMDC): local facilities within ~10 minutes (~800 m).

6.1 The National Design Guide notes that higher densities depend on accessibility to public transport and essential facilities; to optimise density, public transport may need to be provided or improved. In practice, 400–800m to bus stops and up to 1,600 m to rail stations (both context-dependent) are widely used planning heuristics, varied by service frequency, gradients and the walking environment. Active Travel England guidance, which recommends keeping new homes within around 400 m of a bus stop in typical contexts, provides a complementary benchmark, with shorter distances appropriate in centres and for less mobile users. Evidence and guidance (e.g., ~45 dph in the *Urban Design Compendium*, ~40 dph from *Better Places to Live: By Design*) support the association between density and public transport viability.

6.2 Walking distance thresholds should be interpreted alongside the quality, frequency, and reliability of services, as well as pedestrian safety and comfort, including footway provision and continuity, gradients, crossing points, and traffic conditions. In rural and edge-of-settlement contexts in particular, proximity alone may not justify higher density where service provision or pedestrian connectivity is limited, unsafe, or unattractive. These factors will be considered at the site-specific masterplanning stage.

Conclusion

6.3 Concentrating uplift in the most accessible tiers is consistent with national guidance, reduces car dependence, supports local centres, and improves utilisation of existing and planned infrastructure.

Section summary

- 6.4 Concentrating higher densities in the most accessible locations is consistent with national guidance, supports sustainable transport, and makes more efficient use of existing infrastructure. An accessibility-led approach provides a robust and transparent basis for applying density uplift while retaining flexibility to respond to local context and service provision.

7 Design Typologies to Achieve Density with Amenity

- 7.1 This study identified contemporary best practice case studies (see below and Appendix 2 for full details) from across the UK in locations with comparable conditions to Rother. These examples demonstrate how higher densities can be achieved without compromising amenity or design quality.
- 7.2 Delivering higher densities without compromising quality requires a design-led approach balancing compactness and liveability.

Core principles (apply across all types)

- **Private & communal amenity:** every home has private outdoor space (garden/terrace/balcony) and access to usable shared spaces.
- **Public realm quality:** people-first streets and squares with planting, SuDS, and active edges.
- **Daylight & outlook:** building orientation, window placement, articulated or stepped building plans (to admit daylight and improve outlook), and courtyard-based layouts.
- **Microclimate:** trees, rain gardens and shading mitigate overheating and wind.
- **Mobility & parking:** car-lite patterns (managed on-street, rear courts, car-clubs, EV readiness) that prioritise walking/cycling.
- **Servicing:** refuse and cycle storage integrated without compromising streetscape.

Village Typologies (25–45 dph)

- **Examples:** Lovedon Fields (John Pardey); Officers Field (HTA); Hazelmead (Barefoot); North Wingfield Road (Rural Solutions).
- **Blocks:** perimeter (approx. 40–50 m), informal blocks, terrace blocks (25–30 m), mews blocks (60–70 m).
- **Heights:** typically, 2 storeys (occasional 2.5–3).
- **Amenity:** rear gardens ~6–8 m, shared greens.
- **Parking ratio:** ~1.4–2.7 spaces/dw; landscape-integrated.
- **Front door access:** ~100% own-door.

- **Public realm:** informal greens and tree-lined streets reinforcing rural character.

Contemporary lessons for Rother (Village contexts).

- 7.3 These examples demonstrate that densities of 25–45 dph can be achieved in village and rural-edge settings while retaining a clear settlement structure, usable private amenity and a landscape-led approach. The strongest schemes use short terraces and small groups arranged around greens or along lanes, achieving compactness through plot efficiency rather than height. In Rother, the key adaptation is to ensure village typologies avoid suburbanisation: landscape structure, routeways and edge transitions should lead the masterplan; two storeys should remain the default built form with very selective taller markers only where justified by townscape and landscape assessment; and parking should be integrated in small, overlooked courts, car barns or managed on-street solutions that preserve street enclosure and allow street trees and SuDS. Settlement edges should be designed as placemaking features with soft transitions (orchards, meadows, copses, hedgerows) rather than “back fence to countryside” conditions.

Live Well Locally Edge Typologies (35–55 dph)

- **Examples:** Horstead Park (Proctor & Matthews); Trumpington Meadows (Allies & Morrison); Abode at Great Kneighton (Proctor & Matthews); Ashmere Phase 1 (PRP).
- **Blocks:** perimeter, informal, mews, terraces.
- **Heights:** 2–4 storeys.
- **Amenity:** mix of private gardens and shared courts; balconies on upper floors.
- **Parking ratio:** around 1.5 spaces/dw; car-clubs encouraged.
- **Front door access:** ~70–100% own-door.
- **Public realm:** defined streets with planting and integrated SuDS.

Contemporary lessons for Rother (Live Well Locally urban-edge).

- 7.4 These schemes show how 35–55 dph can be delivered at 2–4 storeys through coherent neighbourhood structure (perimeter and mews blocks), rebalanced amenity (shorter private gardens paired with shared greens/courts), and parking that is distributed and designed rather than dominant. In Rother, key risks include height sensitivity at edges, a generic “urban extension” aesthetic if grain and landscape structure are not locally rooted, car dependency if facilities are delayed, and courtyard privacy issues if shared spaces are residual or poorly overlooked.

Accordingly, Live Well Locally sites should be structured as walkable neighbourhoods: where they are not within comfortable walking distance of existing centres, density should be supported by facilities-first phasing (school site, local shop/community hub, mobility hub/high-quality bus provision, and a walkable internal network). Heights should be used as a tool rather than a blanket approach: 2 storeys predominant in the most sensitive contexts; 2–3 storeys generally at Bexhill edge; and 3–4 storeys reserved for hubs/key streets where supported and stepped down toward edges. Parking of around ~1.5 spaces/dw is often achievable where shared/unallocated courts are genuinely usable, EV-ready, well overlooked and paired with high-quality cycle provision, while avoiding continuous frontage driveways that undermine street enclosure and street trees.

Suburban Typologies (45–75 dph)

- **Examples:** The Gables (DK); The Triangle (Glenn Howells); Goldsmith Street (Mikhail Riches); Tibby Triangle (Ash Sakula).
- **Blocks:** perimeter, mews, terraces.
- **Heights:** 2–3 storeys.
- **Amenity:** rear gardens ~4–6 m, communal greens and play.
- **Parking ratio:** ~1.0–1.5 spaces/dw (rear courts + managed on-street).
- **Front door access:** ~100% own-door.
- **Public realm:** tree-lined streets and sociable shared spaces.

Contemporary lessons for Rother (Suburban contexts)

- 7.5 These examples are directly relevant to Bexhill and accessible suburban or urban-edge locations, demonstrating “gentle density” at 2–3 storeys without reliance on high-rise forms and while retaining predominantly own-door housing. Transferable lessons include strong street-led public realm, consistent building lines and good surveillance, and parking strategies that combine rear courts with managed on-street provision. The principal risks are short rear gardens becoming contentious without shared greens and privacy-by-design, and parking courts becoming visually dominant if oversized, poorly overlooked or under-landscaped. In adapting these typologies for Rother, private gardens should be treated as part of an overall amenity package, in which reduced garden depths are balanced by accessible shared greens and play space, alongside design measures that ensure good daylight, outlook and privacy within the home and garden; and boundary treatments should maintain greenness and avoid suburbanisation (hedges/low walls

rather than close-board fencing to public realm, and streets designed to accommodate trees and SuDS).

Urban Typologies (110–125+ dph)

- **Examples:** McGrath Road (Peter Barber); The Mailings (Ash Sakula); 458 Forest Road (Gort Scott).
- **Blocks:** perimeter and mews; courtyard blocks with internal courts.
- **Heights:** 4–5 storeys.
- **Amenity:** balconies, roof terraces, shared courtyards.
- **Parking ratio:** ~0.1–1.0 spaces/dw; car-lite approach.
- **Front door access:** ~50% own-door (target).
- **Public realm:** high-quality squares; active ground floors.

Contemporary lessons for Rother (Selective urban application)

- 7.6 These schemes demonstrate that 110–125+ dph can be achieved with high-quality design where accessibility supports a more car-lite approach and where long-term stewardship of shared spaces is robust. Their transferable value for Rother lies in block articulation, human-scale detailing, courtyard daylight strategies, and active edge design rather than direct replication of height or intensity. In Rother, this typology is likely to be appropriate only selectively in the most accessible locations (town centres, nodes, or specific Bexhill locations where townscape and infrastructure capacity support intensity). Where apartments are required, a domesticised approach is preferred: blocks should read as terraces or mansion-block forms rather than isolated slab buildings. Car-lite assumptions should only be pursued where accessibility genuinely supports them; elsewhere, a combination of managed on-street parking, small courts and shared mobility solutions may be required.
- 7.7 While several of the case studies referenced are award-winning or exemplar schemes, the typologies and principles they demonstrate, such as efficient block structure, rebalanced private and communal amenities, and integrated parking strategies, are increasingly reflected in mainstream residential delivery. These examples are used to demonstrate what is achievable in principle, rather than to prescribe architectural outcomes.

Lessons from best practice

- 40–65 dph is routinely achievable with high-quality public realm and private amenity.

- 60–80%+ own-door homes are possible at higher densities.
- Private space can be rebalanced: smaller rear gardens, where supported by careful layout, orientation and separation distances to avoid overlooking, alongside terraces, balconies and shared communal courts.
- Parking strategy is pivotal, combine on-plot and on-street to avoid dominance (often ~1.5 spaces/dw).
- Landscape integration (rain gardens, swales, trees) underpins climate resilience and placemaking.

Section summary

- 7.8 The typologies set out in this section demonstrate how minimum density expectations can be achieved through mainstream residential forms that balance compactness with liveability. They provide practical reference points for applicants and officers, showing that higher densities can be delivered with high-quality public realm, good amenity, and strong local character.

8 Responding to Local Character

Within the High Weald National Landscape

- 8.1 Achieving higher densities in the High Weald National Landscape must be design-led and landscape-led, ensuring that development respects the distinctive settlement pattern and natural features of this nationally designated landscape. The High Weald Housing Design Guide (DG1–DG10), alongside national guidance in the National Design Guide (NDG) and National Model Design Code (NMDC), sets out principles that directly influence how density can be delivered without eroding character.
- 8.2 Density expectations set out in this study are applied alongside, and subject to, all other relevant Local Plan and national policy requirements, including landscape, heritage, flood risk, ecology, and infrastructure capacity. The application of minimum density expectations does not override the need to avoid unacceptable harm or to respond positively to site-specific constraints.
- 8.3 Within this context, density should be expressed through settlement morphology and layout, rather than scale alone, and should be informed by the following principles:
- **Respect historic settlement pattern:** Reinforce ridge-top villages, greens, and routeway intersections; avoid coalescence between settlements.
 - **Vary density across sites:** Apply higher densities nearer village centres and greens, with lower densities at rural edges to create soft transitions to the wider landscape.
 - **Work with topography and water systems:** Minimise cut-and-fill; retain gill streams, field ponds, and natural drainage features; integrate SuDS in a naturalistic manner.
 - **Structure streets and blocks:** Follow historic routeways; prioritise connected and permeable street networks; avoid cul-de-sacs except on very small local access streets; include characteristic “twittens” to maintain pedestrian permeability.
 - **Reflect built form hierarchy:** Use tighter-knit terraces and grouped forms near activity hubs, with smaller cottages and looser grain towards

edges; avoid homogeneity and large detached clusters as the dominant typology.

- **Allow space for green infrastructure:** Retained hedgerows, mature trees, and ecological corridors are integral to character and will influence net developable area.

Alignment with National Guidance

- 8.4 National guidance reinforces this approach. The NDG and NMDC emphasise:
- Compact form of development expressed through coherent layout rather than scale alone.
 - Variation by area type, including village and rural-edge contexts.
 - Integration of nature and SuDS as a defining component of place.
 - Identity and legibility through building line, roofscape, and frontage design.
- 8.5 These principles ensure that density uplift in the High Weald is compatible with the National Landscape's distinctive character and landscape sensitivity and reflects its historic pattern of compact village form.

Outside the High Weald: Bexhill and Other Urban Areas

- 8.6 Across the district, higher density development can be appropriate where it is design-led and responsive to local character. Within the High Weald National Landscape this requires a landscape-led and settlement-pattern-led approach. In Bexhill and its urban-edge locations, density should respond to urban context, accessibility, and the provision of services, while allowing the introduction of new, contemporary forms where existing suburban patterns do not fully address current objectives for density, walkability, or placemaking.
- 8.7 Bexhill's character is defined by a planned urban structure, clear hierarchies of streets and centres, a distinctive coastal townscape, and a varied built form including Victorian and Edwardian layouts, inter-war suburbs, post-war neighbourhoods, and more recent development. At the urban edge, this character gives way to transitional conditions, where new neighbourhoods must mediate between established townscape structure and the surrounding landscape.

- 8.8 Design-led density in Bexhill and its growth areas should reinforce legibility, walkability, and a coherent public realm, ensuring that increased density contributes positively to placemaking rather than relying on the replication of existing suburban form.
- 8.9 Density expectations in Bexhill and its urban-edge growth locations should therefore:
- **Respond to urban context and structure:** Build on existing street patterns, block structures, and centres, avoiding fragmented or inward-looking layouts.
 - **Support compact, walkable neighbourhoods:** Concentrate higher densities around centres, public transport corridors, and mixed-use hubs, in line with accessibility-led principles.
 - **Recognise the role of urban-edge sites as new neighbourhoods:** Where sites are not within comfortable walking distance of existing centres, higher densities should be supported by the provision of new local facilities, including primary schools, community uses, and local shops, enabling these areas to function as sustainable, walkable neighbourhoods rather than car-dependent extensions.
 - **Reflect a hierarchy of built form:** Allow taller and more compact forms in central and accessible locations, with transitions to lower densities at edges and interfaces with open space.
 - **Emphasise quality of public realm:** Use perimeter and courtyard block structures, active frontages, and clearly defined streets and spaces to support activity and natural surveillance.
 - **Maintain residential amenity:** Ensure good standards of privacy, daylight, and outlook through careful layout, building orientation, massing, and separation distances.

These principles are supported by the typology evidence set out in Section 7.

- 8.10 National guidance supports this approach. The NDG and NMDC promote compact form, coherent street-based layouts, and well-defined public spaces in urban and urban-edge contexts, while allowing variation in typology and density to reflect local character. In Bexhill and its growth areas, this means achieving higher densities

through typological choice, neighbourhood-scale layout, and design quality, rather than reliance on uniform building height or scale.

- 8.11 These principles support the application of Policy BX1 and other urban-focused policies in the Local Plan, providing confidence that higher-density development in Bexhill can reinforce the town's established character and coastal townscape, while supporting long-term, sustainable placemaking outcomes.

9 Historic Case Studies: Lessons from Rother

- 9.1 Historic patterns provide evidence that compact forms are part of Rother's character and can inform contemporary design.
- 9.2 Historic streets and blocks across the district demonstrate that compact development has long been delivered while maintaining amenity and character.
- 9.3 Historic case studies (see Table 1 below and Appendix 3 for full details) were selected to be representative of prevailing settlement patterns across Rother rather than exceptional examples. They illustrate typical plot sizes, building forms, and street structures that have supported higher densities with usable gardens and strong street definition.

Examples of densities achieved

- 9.4 Historic examples reviewed within this chapter fall broadly into three density bands:
 - **Lower-medium density** (approximately 24–35 dph), including High Fords (Icklesham), Forewood Rise (Crowhurst), Churchfield (Westfield) and the High Street at Burwash.
 - **Medium density** (approximately 35–45 dph), including Northiam Road (Staplecross), Coronation Gardens (Hurst Green), Oakfield Cottages (Cackle Street) and Eagle Road (Rye).
 - **Higher density** (approximately 45–55 dph), including Lower Lake (Battle) and Fair Lane (Robertsbridge).
- 9.5 Key characteristics of each example, including storey height, proportion of terraced housing, and typical front and rear garden depths, are summarised in Table 1.

Table 1: Comparative summary of density, gardens, terraces and key lessons

Density Band	Location / Street	Approx. Density (dph)	Typical Storeys	% Terraces	Typical Rear Garden Depth	Typical Front Setback	Key Lessons
24–35 dph	High Fords, Icklesham (Village)	~24	2	71%	~28 m	~6.5 m	Very generous rear gardens materially suppress density without proportionate amenity gain. Density could increase through reduced garden depth while retaining terraces and 2 storey form.
	Forewood Rise, Crowhurst (Village Edge)	~27	2	50%	~20 m	~6 m	Moderate density limited by long gardens and lower terrace ratio. Higher density achievable with shorter gardens and more continuous frontage.
	Churchfield, Westfield (Village Edge)	~30	2	72%	~19.5 m	~6.5 m	Close to a threshold condition: modest reductions in garden depth would enable a step-change in density with little visual impact.
	High Street, Burwash (Village Core)	~33	2.5	80%	~30 m	0 m	Despite long rear plots, density is supported by zero front setback and continuous terrace frontage, illustrating how frontage efficiency and garden depth interact to shape overall density.
35–45 dph	Northiam Road, Staplecross (Village)	~37	2	36%	~10 m	~7.5 m	Density achieved through reduced garden depth, despite lower terrace proportion. Better enclosure and terrace share would support further uplift.

Density Study

	Coronation Gardens, Hurst Green (Village Edge)	~40	2	100%	~12 m	~6.5 m	Shows that 12 m rear gardens provide good amenity for family housing. Density delivered primarily through terrace form rather than height.
	Oakfield Cottages, Cackle Street (Village)	~41	2	78%	~9.5 m	~4.5 m	Compact rear gardens work well when combined with careful orientation and privacy design. Counters assumptions about minimum garden size.
	Eagle Road, Rye (Urban)	~45	2.5	100%	~8 m	~1 m	Upper end of medium density achieved through shorter gardens, strong street enclosure and urban context rather than increased height.
45-55 dph	Lower Lake, Battle (Urban)	~52	2.5	83%	~10 m	~3 m	High density delivered through consistent terrace frontage and compact gardens. Parking accommodated separately from the street frontage.
	Fair Lane, Robertsbridge (Village)	~54	2.5	79%	~12 m	~0.5 m	Village-scale example of very high density without reliance on apartments. Near-zero setback and terrace form are key; parking must be de-emphasised in the street.

Key Cross-Cutting Lessons

9.6 The analysis of the historic case studies and the comparative summary in Table 1 identifies the following cross-cutting lessons:

- Density gains come primarily from reducing excessive garden depth, not from adding storeys.
- Rear gardens of approximately 8–10m can support densities of 35–55 dph with good amenity where layout, orientation, privacy and daylight are handled carefully.
- Front setback efficiency (often ≤ 3 m, sometimes near zero) is a major contributor to compactness and street quality.
- A high proportion of terraced housing (approximately 70–100%) is strongly correlated with higher densities at modest heights (2–2.5 storeys).
- Rear gardens exceeding approximately 20m materially suppress achievable density without clear corresponding benefits to residential amenity.
- Garden depth should be considered as part of an integrated layout strategy (orientation, privacy, outlook and access to shared/public green space), rather than as a stand alone numerical target.

Synthesis

9.7 Analysis of historic village and urban examples across Rother shows that densities of 35–55 dwellings per hectare have been consistently achieved at 2–2.5 storeys, primarily through efficient plot structure rather than increased height. In particular, rear garden depths of approximately 8–10 metres, combined with strong street frontage and a high proportion of terraced housing, have delivered compact, walkable neighbourhoods with good residential amenity. By comparison, rear gardens exceeding ~20 metres materially suppress density without corresponding improvements to quality of life. These lessons inform a design-led approach to contemporary development, where private amenity is rebalanced alongside high quality public realm, landscape and sustainable movement.

Implications for Contemporary Density, Typologies and Garden Standards

9.8 The historic analysis demonstrates that medium to higher densities have long been achievable across Rother's villages, village edges and urban areas without reliance on

increased building height, and that compact forms can coexist with good standards of residential amenity. The principal drivers of density in these examples are plot efficiency, frontage discipline and typological choice, rather than scale alone.

Density and built form

- 9.9 Across the examples analysed, densities in the range of 35–55 dph were typically achieved at 2–2.5 storeys, with higher densities strongly associated with a high proportion of terraced housing. This reinforces the importance of terraced, mews and courtyard typologies as primary means of delivering compact development in contemporary schemes, particularly within Villages and Live Well Locally (urban edge) contexts.
- 9.10 Detached and semi-detached formats can contribute to character at edges and transitions, but the evidence indicates that excessive reliance on these forms significantly limits achievable density and reduces land use efficiency, particularly where services and facilities are present or proposed.

Garden depth and private amenity

- 9.11 A consistent finding across all case study groups is that rear garden depth is one of the most influential variables affecting density, often more so than building height or storey count. In particular:
- Where development is predominantly terraced, rear gardens of approximately 8–10 metres can support densities of 35–55 dph while still providing usable private amenity, subject to careful orientation, separation distances and window placement to protect privacy and daylight.
 - Rear gardens exceeding approximately 20 metres materially suppress achievable density, often without proportionate improvements to residential quality or usability.
- 9.12 This evidence suggests that contemporary development should move away from default assumptions about minimum garden depth, and instead adopt a design-led approach that balances:
- private garden dimensions;
 - building orientation;
 - privacy and overlooking distances;

- window placement; and
- access to shared and public green space.

9.13 In this context, smaller but well-designed private gardens, combined with high quality streets, greens, courtyards and SuDS based landscape, can deliver equal or better overall amenity than layouts dominated by surplus private garden space.

Frontage efficiency and public realm

9.14 Historic examples consistently demonstrate that reduced front setbacks and strong street enclosure are central to achieving compact form. Zero or minimal front gardens are common in village cores and urban areas, while modest setbacks of approximately 2–4 metres can accommodate defensible space and planting without undermining density.

For contemporary schemes, this reinforces the importance of:

- consistent building lines;
- street fronting entrances;
- active edges rather than parking dominated frontages; and
- integrating landscape elements within the public realm rather than relying solely on private plots.

Parking and layout

9.15 The case studies underline that successful higher density environments do not accommodate parking within the primary street frontage. Street fronting terrace arrangements work best where parking is:

- designed as managed on-street provision, broken into short runs with trees and SuDS; and/or
- located in small, well overlooked rear courts, mews or car barns serving limited numbers of dwellings.

9.16 This approach allows the street to function first as a place for movement, social interaction and identity rather than as a storage space for vehicles. It is particularly relevant for contemporary development in historic villages and Live Well Locally urban edge sites, where parking pressure can otherwise undermine layout quality and constrain opportunities for street trees and SuDS.

Relationship to Live Well Locally and Policy Application

9.17 The lessons drawn from historic development patterns align closely with the objectives of the Live Well Locally approach and provide a robust design-led justification for the density ranges set out in this study.

Live Well Locally sites

9.18 Live Well Locally sites are intended to function as walkable neighbourhoods, often delivered as urban extensions or new village scale settlements. The historic evidence demonstrates that densities in the range of 35–55 dph:

- are compatible with village character when expressed through appropriate typologies;
- support the critical mass required for local facilities such as primary schools, community hubs and convenience retail;
- enable more efficient use of land in constrained districts; and
- facilitate better public transport viability and active travel outcomes.

9.19 Where such sites are not within comfortable walking distance of existing centres, the evidence supports a neighbourhood scale approach in which density, typology and garden standards are calibrated to support new local services and facilities, rather than defaulting to low density suburban layouts that increase car dependency.

Policy implications

9.20 The findings support minimum density expectations as a starting point rather than a ceiling, to be applied flexibly through design-led masterplanning and, where appropriate, design coding. In particular, the evidence confirms that:

- higher densities can be achieved without harm to character when informed by local morphology and historic precedent;
- garden standards should be considered as part of an integrated layout strategy rather than fixed numerical thresholds; and

- density variation across sites (higher near centres and hubs; lower at edges) is historically established and can be delivered through typological choice and layout.

9.21 These principles directly inform the implementation of Policy LWL1, BX1 and site specific allocation policies, providing confidence that the proposed density ranges are realistic, justified and capable of being delivered through masterplans and design codes aligned with NDG and NMDC expectations, with site specific viability and infrastructure delivery considerations addressed through subsequent masterplanning stages.

Interpretation

9.22 These examples demonstrate that densities of around 35–55 dph have historically been achieved at modest heights while retaining usable private amenity and strong street definition. This provides a local precedent for applying NPPF expectations on the efficient use of land and design quality in accessible locations.

Integration with modern guidance

9.23 The North East Bexhill SPD (2009) provides principles for achieving density with amenity, including flats and terraces in higher-density zones and mixed house sizes within each band. These principles align with the typologies set out in this study.

10 Climate, Energy & Environmental Outcomes

- 10.1 Compact, well-connected development supports Local Plan objectives:
- **Transport:** shorter trips and higher walking/cycling mode share reduce emissions.
 - **Energy:** terraces have lower surface-to-volume ratios, supporting fabric-first performance.
 - **Nature & water:** BNG, SuDS, urban greening and tree canopy deliver habitat, attenuate runoff and mitigate heat.
 - **Systems:** where appropriate, compactness can enable communal/networked energy solutions.

11 Updated Density Ranges for Rother

Recommended ranges (Stage 2)

- **Urban Areas:** 110–125 dph
- **Suburban Areas:** 45–75 dph
- **Live Well Locally Areas:** 35–55 dph
- **Villages:** 25–45 dph

Rationale for change since Stage 1

11.1 This update reflects: (i) historic precedent showing 25–55 dph is common in villages/centres; (ii) contemporary typologies that deliver higher net densities with amenity; (iii) an accessibility-led case for concentrating uplift in the most connected tiers; and (iv) the need to optimise scarce land while respecting the High Weald's character. (see Appendix 1: Rother Density Scale)

Relationship to site allocations

- 11.2 The density ranges set out above underpin the indicative site capacities used to inform the Regulation 18 site allocations and development strategy. They provide a consistent, evidence-based framework for estimating capacity across different area types and accessibility contexts, while allowing flexibility for site-specific design responses.
- 11.3 At allocation stage, densities are not intended to be applied mechanistically. Instead, they inform a realistic starting point for masterplanning, ensuring that sites are planned efficiently while responding to local character, constraints, and infrastructure considerations.

Applying density ranges within individual sites

- 11.4 On larger or more complex sites, the recommended density ranges should be applied across the site, rather than uniformly. Good design practice typically involves:
- Higher densities focused near local centres, public transport corridors, greens, and services.
 - Medium densities forming walkable neighbourhood structure.

- Lower densities at sensitive edges, rural interfaces, and areas with landscape or heritage constraints.
- 11.5 This approach allows sites to achieve efficient overall densities while responding positively to local character and environmental considerations. Average site densities may therefore sit toward the middle of the relevant range, even where higher-density typologies are used in the most accessible locations.

12 Recommendations & Next Steps

Application in policy and decision-making

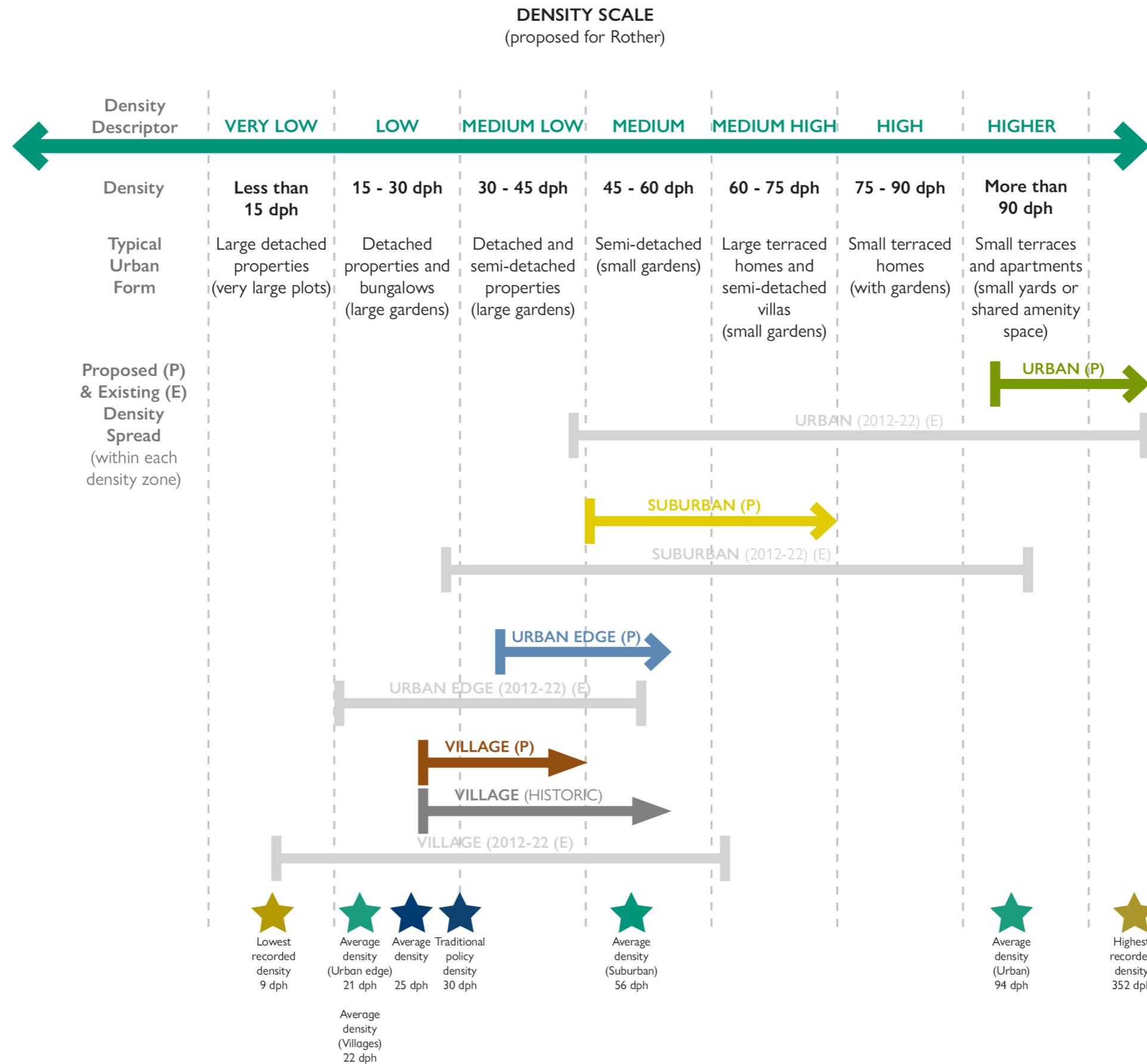
- 12.1 Apply minimum density expectations by area type and uplift by accessibility tier. In centres, public transport corridors and Live Well Locally locations, especially in North and West Bexhill, higher densities should be the starting point where design, infrastructure and site conditions allow. The typologies and principles in this study provide a reference for applicants and officers to show density can be achieved with amenity and character.

Further technical work

Relationship to viability and deliverability

- 12.2 The density ranges set out in this study reflect observed delivery, historic precedent, and contemporary design practice. Higher densities can support viability by improving land value efficiency and supporting infrastructure provision. Formal viability testing will be undertaken alongside Regulation 19 policy refinement and site-specific masterplanning to ensure that density, affordable housing, infrastructure, and design quality can be delivered together.

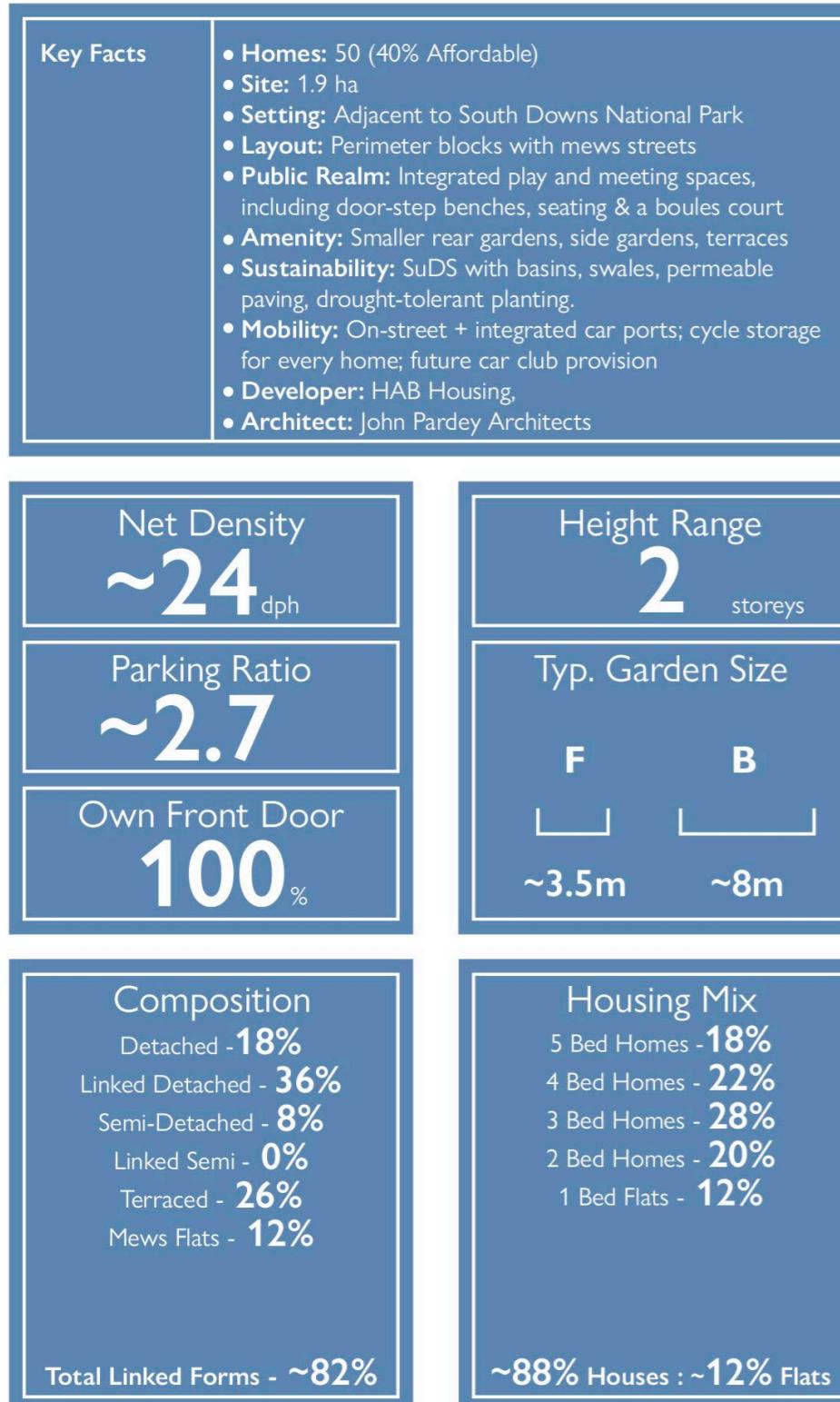
- **Strategic masterplans/design codes** for large allocations (e.g., North/West Bexhill).
- **Viability testing** of cost/value assumptions (parking, heights, ground conditions, utilities, affordable housing mix). Viability testing will ensure proposed densities are deliverable alongside affordable housing and infrastructure requirements.
- **Phasing strategy** aligned with infrastructure delivery for strategic sites.
- **(Future step) Design-led capacity testing** at site level to demonstrate deliverability within the recommended ranges.


Engagement and monitoring

- 12.3 Continue engagement with Development Management, Housing/Regeneration, Transport, Utilities, Health and Education providers, the HWNL Unit, and parish councils. A Development Management checklist will be used to assess proposals against area type minimum densities and accessibility tier expectations. Annual monitoring of permissions, completions, and achieved densities will be undertaken

and reported through the Authority Monitoring Report to inform future policy review.

- 12.4 Monitoring will focus not only on overall housing delivery, but also on the densities achieved relative to the minimum expectations set out in Policy LWL1, particularly in the most accessible locations. Where there is evidence of persistent under-delivery of density, this may trigger targeted interventions such as updated guidance, refinement of design coding, or further engagement with applicants, to ensure that the Local Plan's objectives for the efficient use of land are being met.


Appendix 1: Density scales

Appendix 2: Contemporary Best Practice

CASE STUDY: Lovedon Fields, Kings Worthy, Hampshire

SITE TYPE - Edge-of-settlement / Greenfield site

Bottom. Site plan
Top. Aerial view of scheme.

Linked-detached homes forming the rural edge

CASE STUDY: Hazelmead, Bridport, Dorset

Key Facts
<ul style="list-style-type: none"> Homes: 53 (100% Affordable) Site: 1.52 ha – sloping hillside Context: Within Dorset AONB setting Layout: Terraced homes and two apartment blocks Public Realm: Central village green with common house; shared gardens, natural play areas Amenity: Private terraces or small gardens Sustainability: Photovoltaic roof array with community battery; rainwater harvesting; biodiversity measures Mobility: Parking at site edge; car-free interior streets; cycle storage; two car-club vehicles Developer: Bridport Cohousing CLT Architect: Barefoot Architects

Net Density ~35 dph	Height Range 2 storeys
Parking Ratio ~1.8	~ Typ. Garden Size F B ~2m ~8m
Own Front Door 100 %	

Composition Terraced - 74% Flats - 26%	Housing Mix 4 Bed Homes - 6% 3 Bed Homes - 25% 2 Bed Homes - 43% 1 Bed Flats - 26%
~74% Houses : ~26% Flats	

SITE TYPE - Edge-of-settlement / Greenfield site

Bottom. Site plan
Top. Aerial view of scheme.

Terraced homes with front gardens facing car-free streets

Private terrace overlooking a car-free street

CASE STUDY: Officers Field, Portland, Weymouth

SITE TYPE - Edge-of-settlement / Greenfield site

Site plan

Bottom. Detached homes with side gardens.
Top. Aerial view of scheme.

Linked semi-detached and terraced homes arranged around public open space.

CASE STUDY: North Wingfield Road, Grassmoor

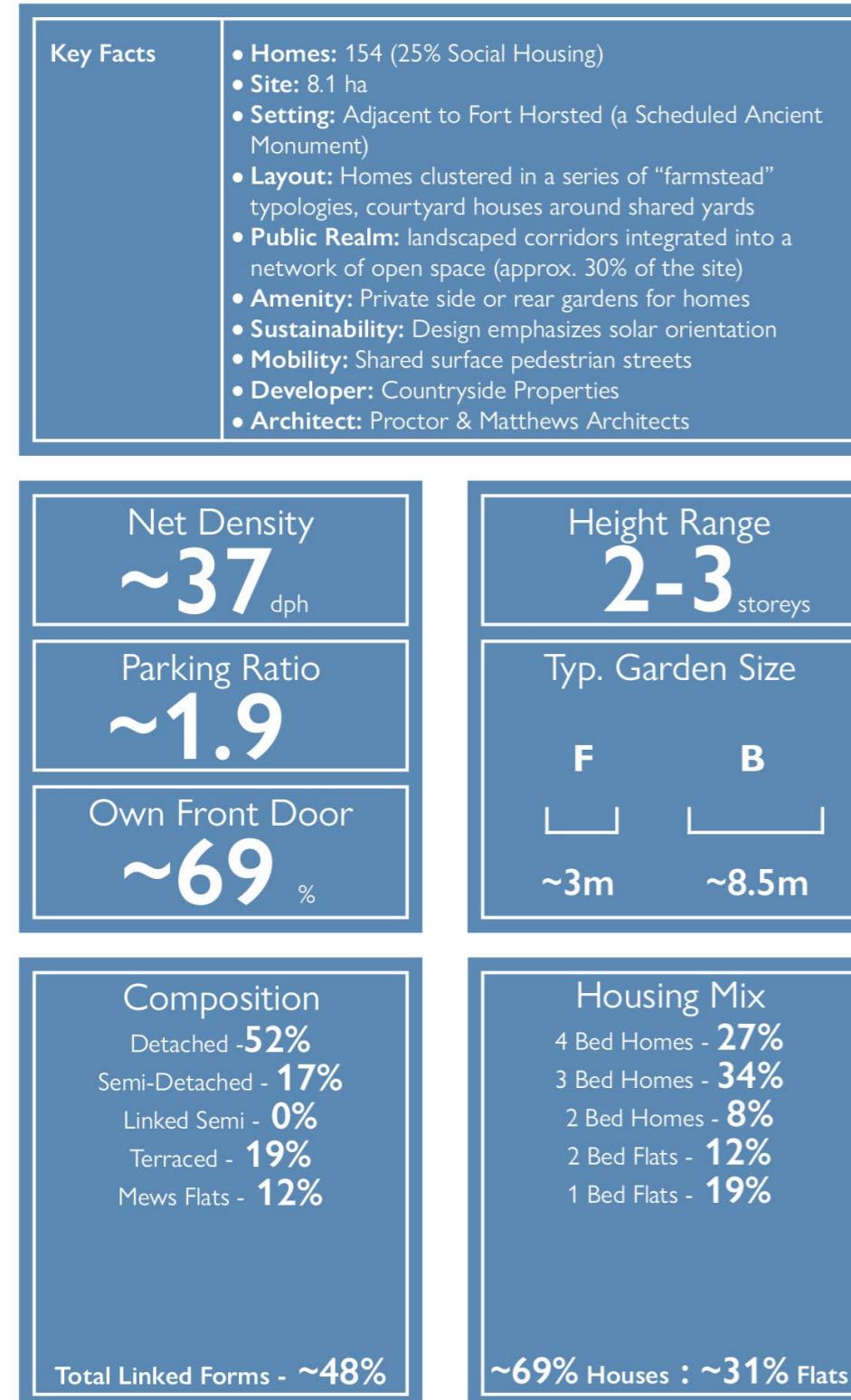
Key Facts	<ul style="list-style-type: none"> Homes: 11 (100% Social Housing) Site: 0.25 ha Setting: Edge of village setting, outside AONB Layout: Clustered homes arranged around a shared courtyard inspired by local farmstead typology Public Realm: Landscaped communal courtyard with planting and pedestrian priority Amenity: Private rear gardens for all homes Sustainability: Timber-frame; local vernacular materials Mobility: On-plot parking integrated into layout; pedestrian-friendly shared surface within courtyard Developer: North East Derbyshire DC Architect: Rural Solutions
-----------	---

Net Density ~44 dph	Height Range 2 storeys
Parking Ratio ~2.1	Typ. Garden Size F B n/a ~7m
Own Front Door 100 %	

Composition Semi-Detached - 100 %	Housing Mix 3 Bed Homes - 45 % 2 Bed Homes - 55 % 100% Houses : 0% Flats
--	--

SITE TYPE - Edge-of-settlement / Greenfield site

Bottom. Site plan
Top. Entrance view of scheme.



Homes fronting onto a shared courtyard

View of the homes from the surrounding countryside

CASE STUDY: Horstead Park (Phase 1), Chatham, Kent

SITE TYPE - Edge-of-settlement / Greenfield & Brownfield site

Bottom. Site plan
Top. Residential street scene

Homes overlooking a shared-surface street

Terraced homes lining a shared street

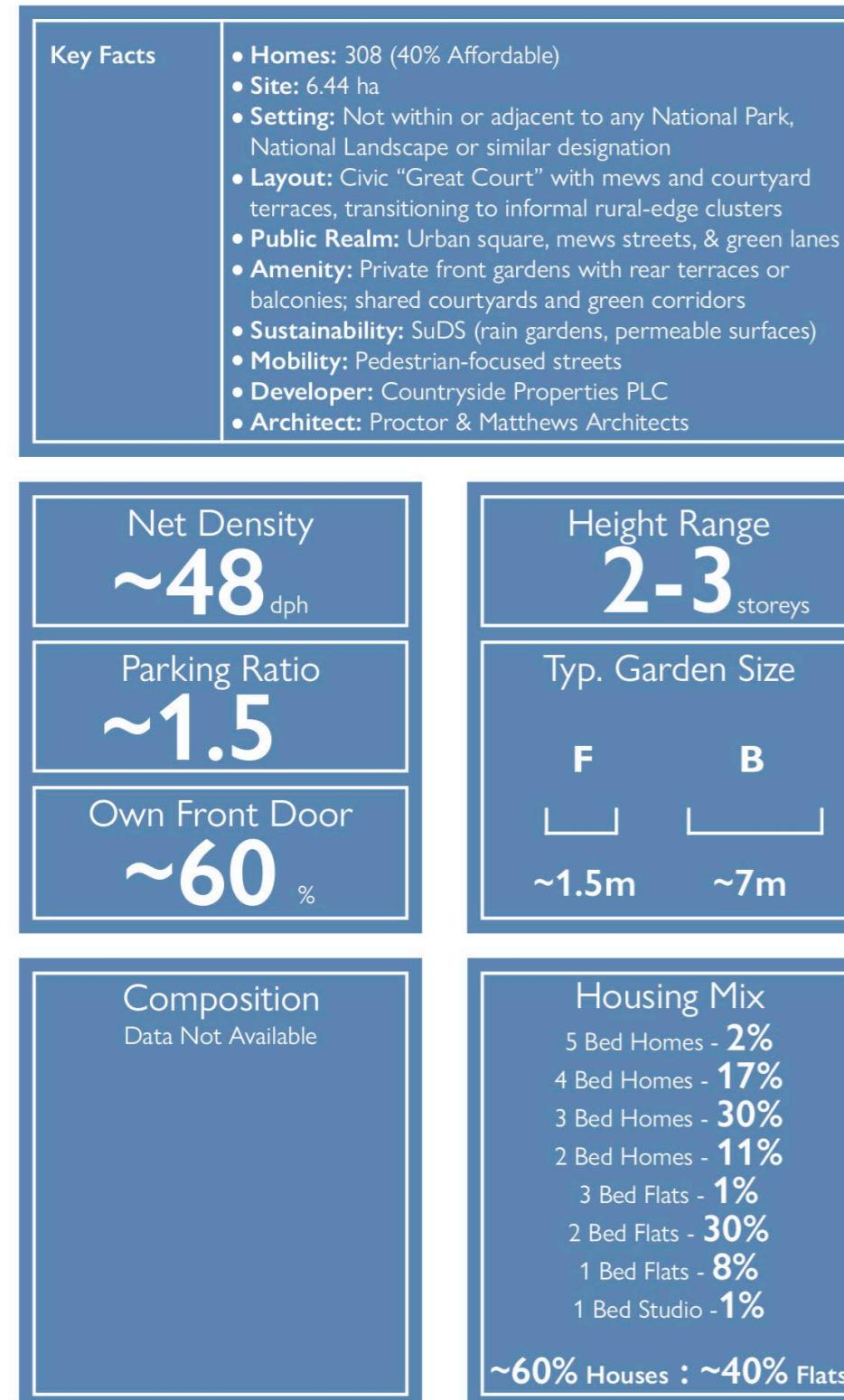
CASE STUDY: Trumpington Meadows, Cambridge

Key Facts	<ul style="list-style-type: none"> Homes: 350 (40% Affordable) Site: 9.63ha Setting: Not within or adjacent to any National Park, National Landscape or similar designation Layout: Series of character areas Public Realm: Structured around a primary "green link" and corridors feeding into adjacent country park Amenity: Private side or rear gardens for homes Sustainability: Habitat restoration Mobility: Connected walking and cycle routes, direct links to Park & Ride, shared surface squares Developer: Barratt Homes Eastern Counties Architect: Allies & Morrison
-----------	--

Net Density ~40 dph	Height Range 2.5 storeys
Parking Ratio ~1.5	Typ. Garden Size F B ~2.8m ~8m
Own Front Door ~70 %	

Composition Data Not Available	Housing Mix 5 Bed Homes - 6.6% 4 Bed Homes - 22.5% 3 Bed Homes - 32.5% 2 Bed Homes - 10.5% 2 Bed Flats - 22% 1 Bed Flats - 6% ~70% Houses : ~30% Flats
-----------------------------------	---

SITE TYPE - Edge-of-settlement; predominantly greenfield with limited brownfield



Bottom. Terraced housing with integrated carports.
Top. Homes overlooking landscaped green

Terraced homes lining a shared street

CASE STUDY: Abode at Great Kneighton, Cambridge.

SITE TYPE - Edge-of-settlement; predominantly greenfield with limited brownfield

Bottom. Site plan
Top. Linked detached homes with private amenity above carports

Active travel links to rural-edge clusters

CASE STUDY: Ashmere Phase 1, Ebbsfleet, Kent

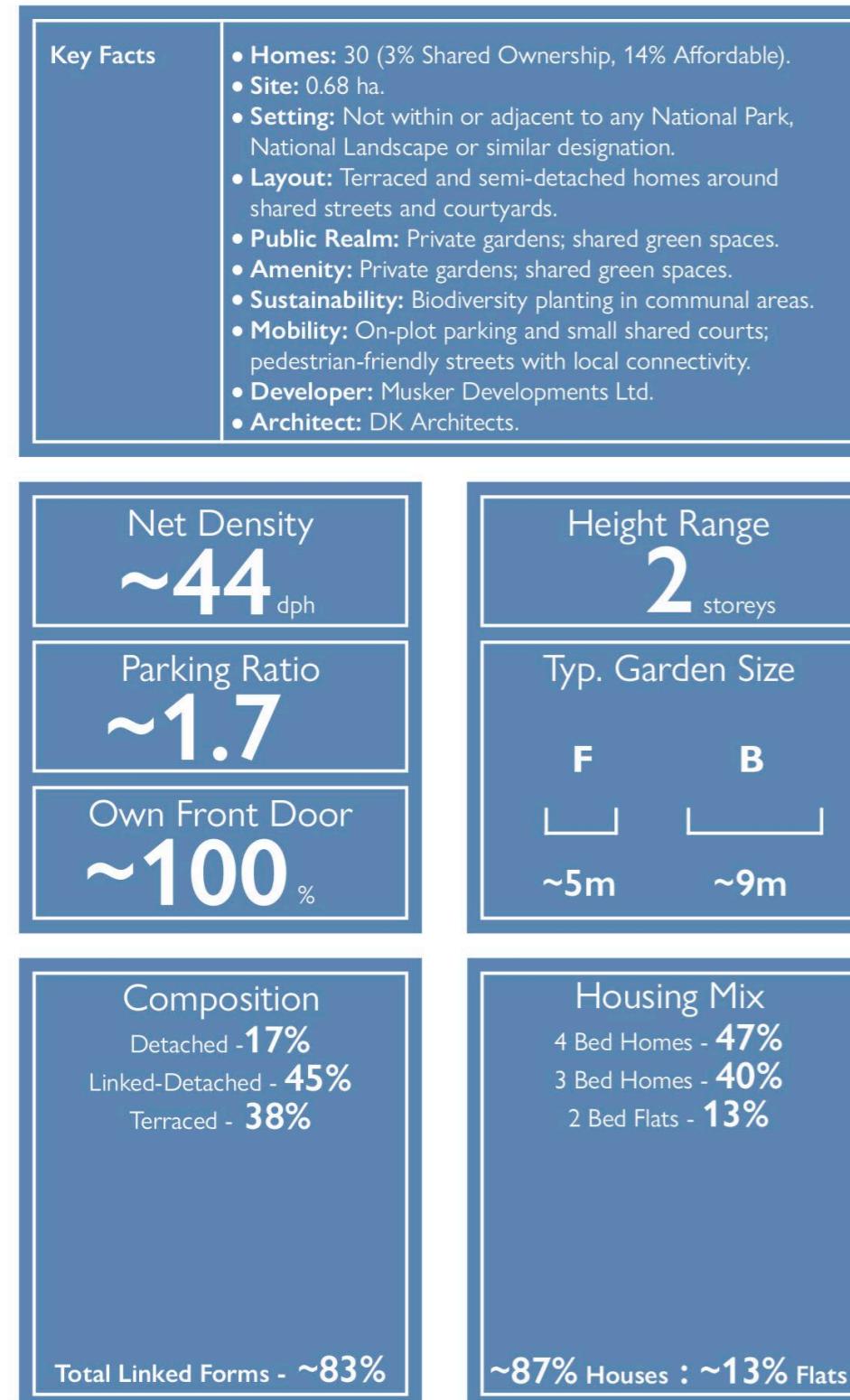
Key Facts	<ul style="list-style-type: none"> Homes: 281 (25.2% Affordable). Site: 5.56 ha Setting: Not within or adjacent to any National Park, National Landscape or similar designation Layout: Heritage-inspired apartment blocks (Oast-house typology) with rural-style housing near chalk cliffs Public Realm: Landscaped courtyards, green swales and spaces tying into the chalk cliff edge landscape Amenity: Courtyards & play areas behind housing clusters Sustainability: Biodiverse landscape Mobility: Pedestrian-focused streets with cycle links. Developer: Countryside Clarion (Eastern Quarry) LLP Architect: PRP Architects
-----------	---

Net Density ~50.5 dph	Height Range 2-4 storeys
Parking Ratio ~1.5	Typ. Garden Size F B ~2m ~10m
Own Front Door ~38 %	

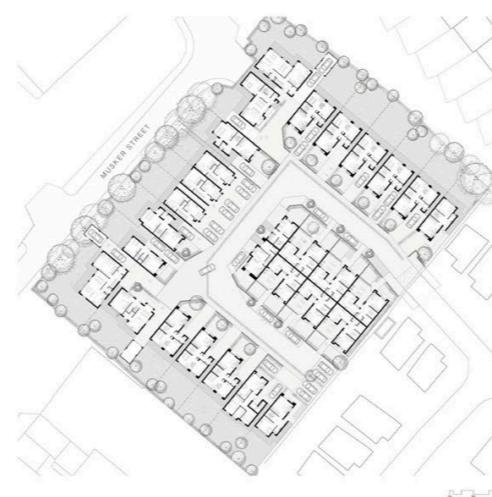
Composition Data Not Available	Housing Mix 4 Bed Homes - 11.5% 3 Bed Homes - 22.5% 2 Bed Homes - 4% 2 Bed Flats - 53% 1 Bed Flats - 4% 1 Bed Studio - 5% ~38% Houses : ~62% Flats
-----------------------------------	---

SITE TYPE - Edge-of-settlement; predominantly brownfield

Bottom. Site plan
Top. Aerial view of scheme.



Homes overlooking landscaped green edge



Terraced and linked homes in a farmstead cluster around play and green space.

CASE STUDY: The Gables, Crosby, Liverpool

SITE TYPE - Brownfield suburban infill site

Bottom. Site plan.
Top. Linked homes on shared street.

Terraced homes on shared street.

Linked detached homes on shared street.


CASE STUDY: The Triangle, Swindon

Key Facts	<ul style="list-style-type: none"> Homes: 42 (50% Affordable). Site: 0.8 ha. Site Type: Brownfield suburban infill. Setting: Located within an established residential area. Layout: Homes arranged around a central landscaped "village green" within triangular geometry. Public Realm: Mews-like streets and communal planting. Amenity: Kitchen gardens and play areas. Sustainability: SUDS, biodiversity planting. Mobility: Small car park, on-plot car bays, home zones, covered porches with bike storage, and car-share strategy. Developer: Hab Oakus. Architect: Glenn Howells Architects.
-----------	--

Net Density ~52.5 dph	Height Range 2-3 storeys
Parking Ratio ~1.5	Typ. Garden Size F B ~5m ~8m
Own Front Door 100 %	

Composition Terraced - 100 %	Housing Mix 4 Bed Homes - 16.5 % 3 Bed Homes - 31 % 2 Bed Homes - 38 % 2 Bed Flats - 5 % 1 Bed Flats - 9.5 % ~86% Houses : ~14% Flats
--	--

SITE TYPE - Brownfield suburban infill site

Bottom. Site plan.
Top. Terraced homes around a green.

Covered porches with bike storage.

Aerial view of scheme.

CASE STUDY: Goldsmith Street, Norwich

Key Facts	<ul style="list-style-type: none"> Homes: 105. Site: 1.28 ha. Setting: Inner-city Norwich. Layout: Seven terraced blocks arranged in four rows. Public Realm: Tree-lined pedestrian streets, shared lanes, communal gardens and play spaces. Amenity: Private rear gardens for houses; shared green spaces for flats. Sustainability: Built to Passivhaus standard. Mobility: Edge parking, pedestrian streets, and cycle storage integrated into each dwelling. Developer: Norwich City Council. Architect: Mikhail Riches.
-----------	--

Net Density ~83 dph
Parking Ratio ~0.8
Own Front Door 100 %

Height Range 2-3 storeys
Typ. Garden Size
F B
~2.5m ~5.5m

Composition Terraced - 100 %
Total Linked Forms - 100 %

Housing Mix
4 Bed Homes - 5 %
3 Bed Flats - 1 %
2 Bed Homes - 38 %
2 Bed Flats - 3 %
1 Bed Flats - 53 %
 ~43% Houses : ~57% Flats

SITE TYPE - Brownfield urban infill

Bottom. Site plan.
Top. Terrace blocks lining the street.

Terrace blocks and flats with own doors.

Aerial view of scheme.

CASE STUDY: Tibby Triangle, Southwold.

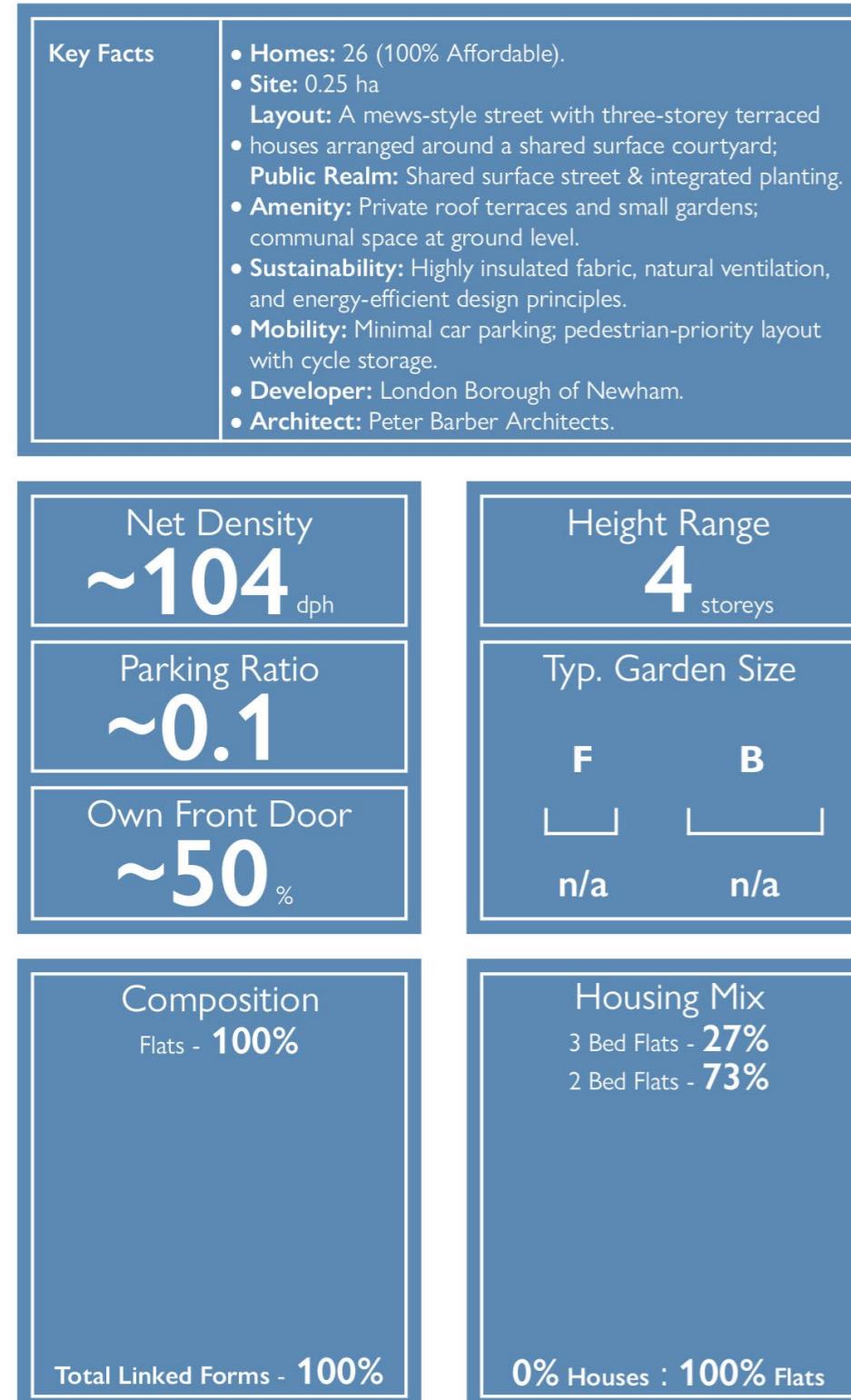
Key Facts	<ul style="list-style-type: none"> Homes: 34. Site: 0.39 ha. Setting: Within a historic coastal town context. Layout: Homes arranged around a triangular shared courtyard with pedestrian priority and mews-style streets. Public Realm: Landscaped central space, shared surface streets, and integrated biodiversity planting. Amenity: Private gardens; communal green space. Sustainability: Energy-efficient design with local materials. Mobility: On-plot parking and small shared courts; pedestrian-friendly layout with local connectivity. Developer: Hopkins Homes. Architect: Ash Sakula Architects.
-----------	---

Net Density ~85 dph	Height Range 2-3 storeys
Parking Ratio ~1	Typ. Garden Size F B n/a ~4.5m
Own Front Door 100 %	

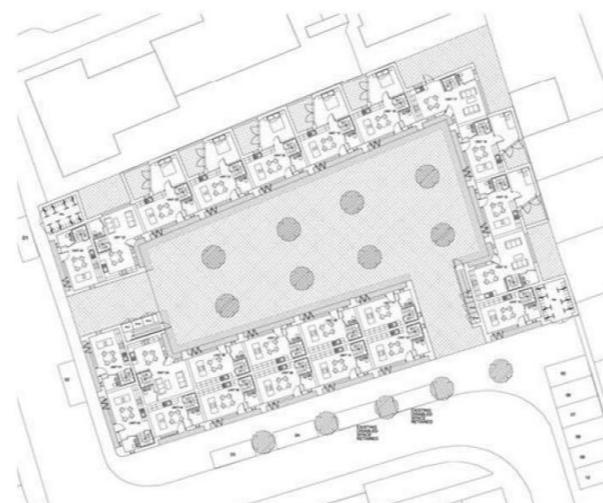
Composition Data Not Available	Housing Mix 26 Houses 8 Apartments Homes from 1 to 4 bedrooms ~76% Houses : ~24% Flats
-----------------------------------	---

SITE TYPE - Brownfield urban infill

Bottom. Site plan.
Top. Terrace blocks lining green space.



Terrace homes with integrated carports on mews street.

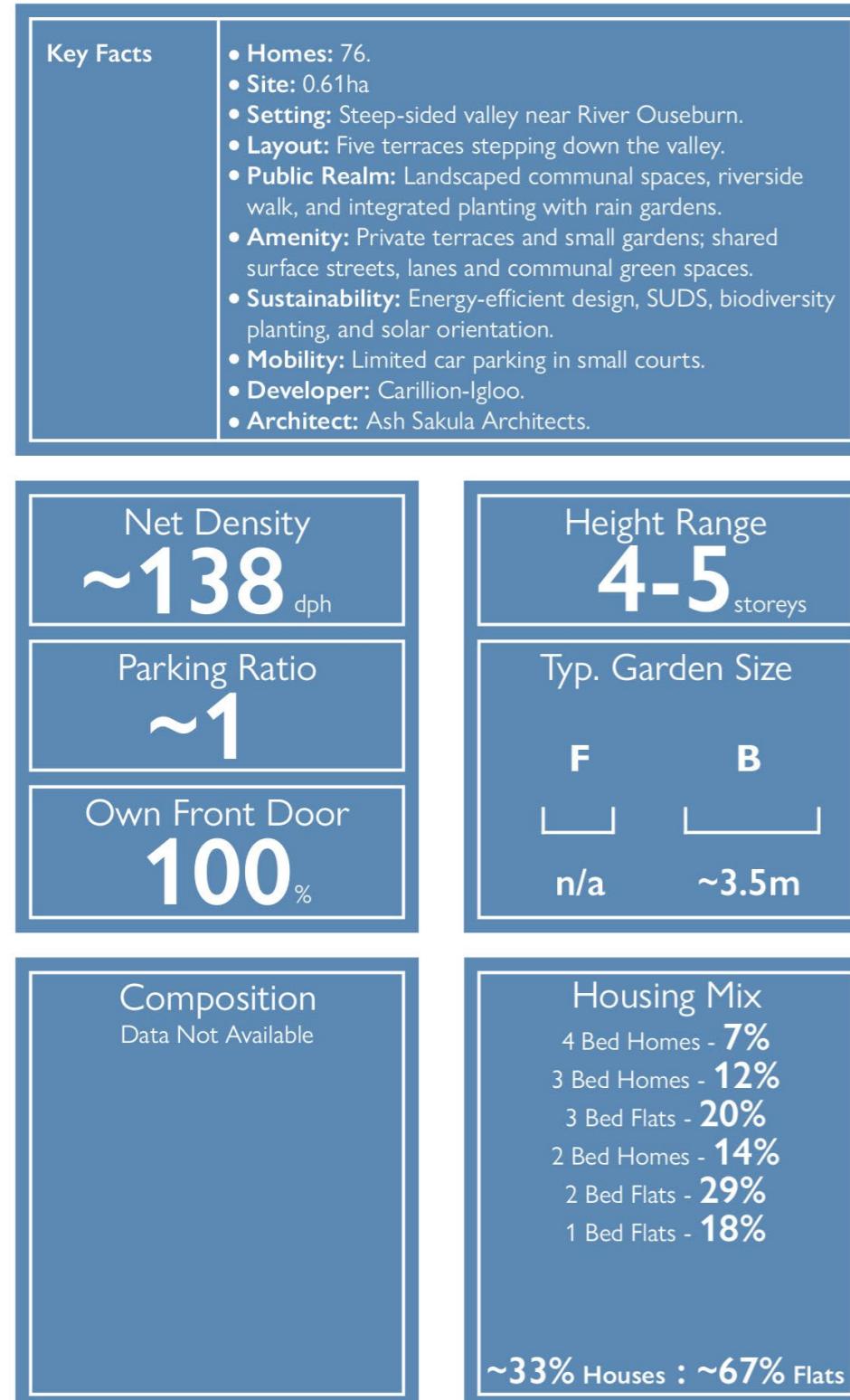


Terrace blocks lining green space.

CASE STUDY: McGrath Road, Stratford, East London.

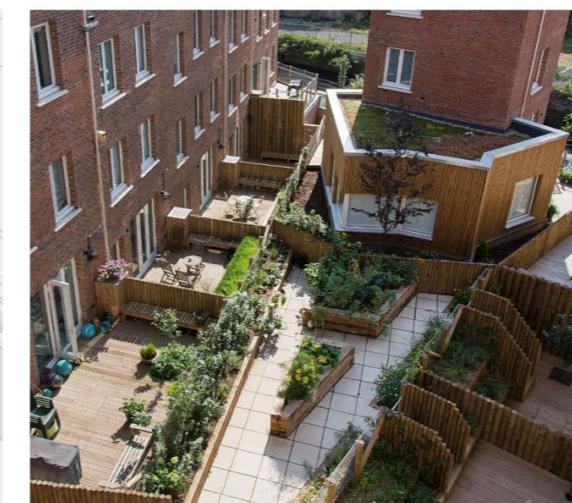
SITE TYPE - Brownfield urban infill.

Bottom. Site plan.
Top. Three-storey terraced houses on a mews street.



Small entrance threshold within arch on mews street.

Three-storey terrace homes overlooking communal courtyard.


CASE STUDY: The Malings, Newcastle-upon-Tyne.

SITE TYPE - Brownfield urban infill.

Bottom. Site plan.
Top. Terraces stepping down to the river.

Rear gardens opening onto communal courtyards.

Aerial view of scheme.

CASE STUDY: 458 Forest Road, Walthamstow, London.

Key Facts	<ul style="list-style-type: none"> Homes: 90 (100% Affordable). Site Area: 0.226 ha. Setting: Fronting Lloyd Park. Layout: A sculpted five-storey massing stepping down to three storeys to respect neighbouring Victorian terraces. Public Realm: South-facing courtyard with seating, raised planters, and growing beds; two roof terraces. Amenity: Light-filled lobby with seating and post-boxes to foster interaction. Sustainability: On-site energy centre. Mobility: Covered bike storage and visitor racks. Developer: Pocket Living. Architect: Gort Scott Architects.
Net Density	~398 dph
Parking Ratio	0
Own Front Door	0 %
Composition	Flats - 100%
Housing Mix	1 Bed Flats - 100%
Total Linked Forms	100%
0% Houses	: 100% Flats

SITE TYPE - Brownfield urban infill.

Bottom. Site plan.
Top. Five-storey building stepping down to three storeys.

Communal roof terrace.

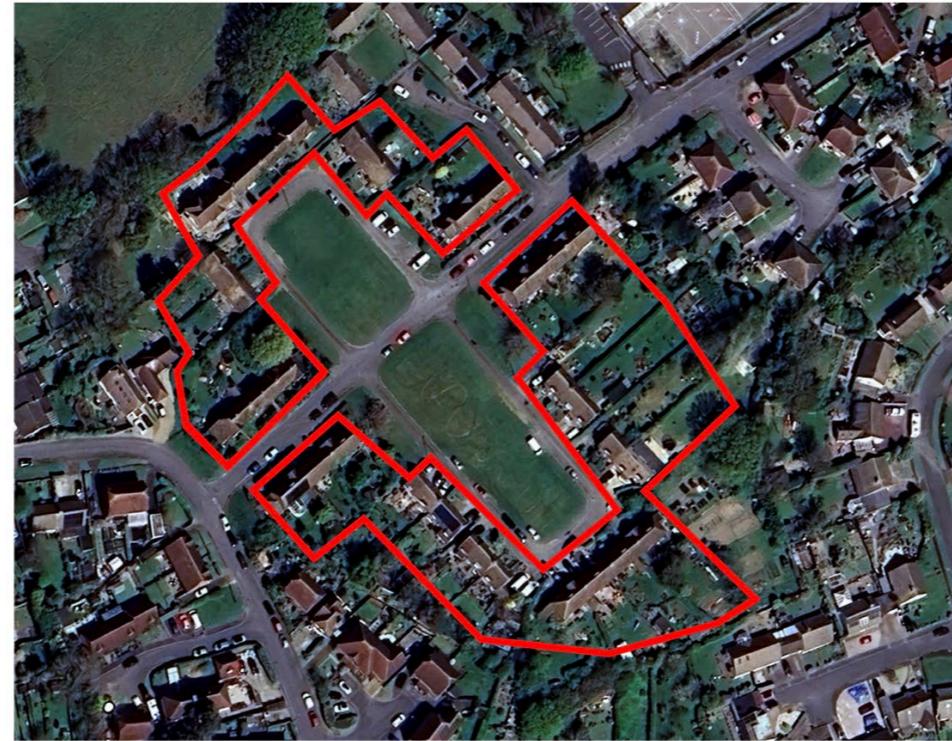
Aerial view of scheme.

Appendix 3: Historic Sites in Rother

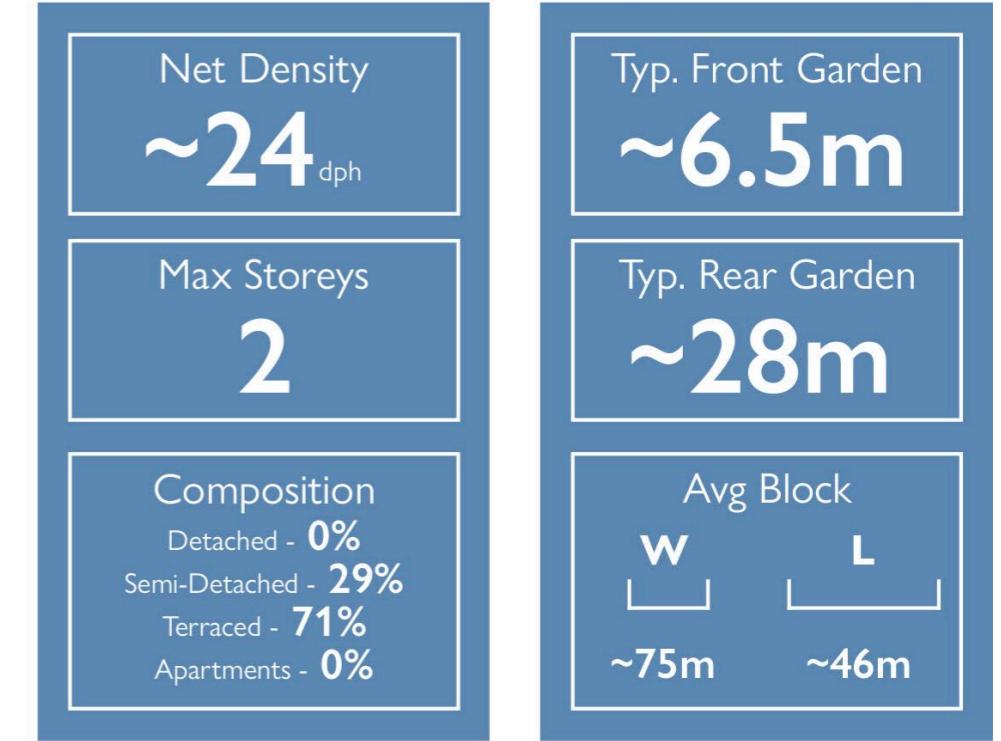
LOCATION - High Fords, Icklesham

AREA TYPE - Village

LIKELY PERIOD: c.1950's – 1960s


Historical Character	<ul style="list-style-type: none"> • Evolution: Settlement of strategic importance with long-standing agricultural and transport connections. • Origins: Saxon references date to 772. Historic buildings: Parish church has been a place of worship for over 800 years.
Landscape Character	<ul style="list-style-type: none"> • Listed buildings: 16 within the settlement, mostly in the historic core east of the village; includes Grade I Parish Church of St Nicholas. • Archaeological Notification Areas (ANAs): Historic core to the east of the village is covered by ANA relating to original settlement. • Location: High Weald National Landscape, southern ridge of Brede Valley. • Topography: Broad valley with flat floor, enclosed by steep slopes; ridge-top settlements with ribbon development. • Scenic features: Wide vistas, marshes, reed-lined ditches, wetland birds, semi-natural ghyll woodlands.

Case Study Photography



Landscape & Historical Development

Satellite Context Plan

Detailed Site Plan

Urban Character & Built Form Analysis

LOCATION - Forewood Rise, Crowhurst

Case Study Photography

AREA TYPE - Village

LIKELY PERIOD: c.1950's – 1960s

Historical Character

- **Evolution:** Village of strategic and historic significance with a long-standing rural and agricultural identity.
- **Origins:** Manor owned by Saxon King Harold in 1066; village attacked by William the Conqueror.
- **Historic buildings:** Parish Church of St George with ancient yew tree; remains of the Manor House (Scheduled Monument).
- **Listed buildings:** Eight, mostly 14th–17th century; most notable is the Grade I Parish Church of St George.
- **Archaeological Notification Areas (ANAs):** Church and surrounding historic core defined as an ANA.
- **Location:** Forms part of the wider Combe Haven Valley, edge of High Weald NL.
- **Topography:** Rolling ridges, valleys, gill streams; enclosed by Battle Ridge.
- **Scenic features:** Woodlands, reed beds, farmed landscape, wide views, scattered farmsteads.

Landscape Character

Landscape & Historical Development

Satellite Context Plan

Detailed Site Plan

Net Density
~27 dph

Max Storeys
2

Composition
Detached - 0%
Semi-Detached - 7%
Terraced - 50%
Apartments - 43%

Typ. Front Garden
~6m

Typ. Rear Garden
~20m

Avg Block
W ~37m L ~123m

Urban Character & Built Form Analysis

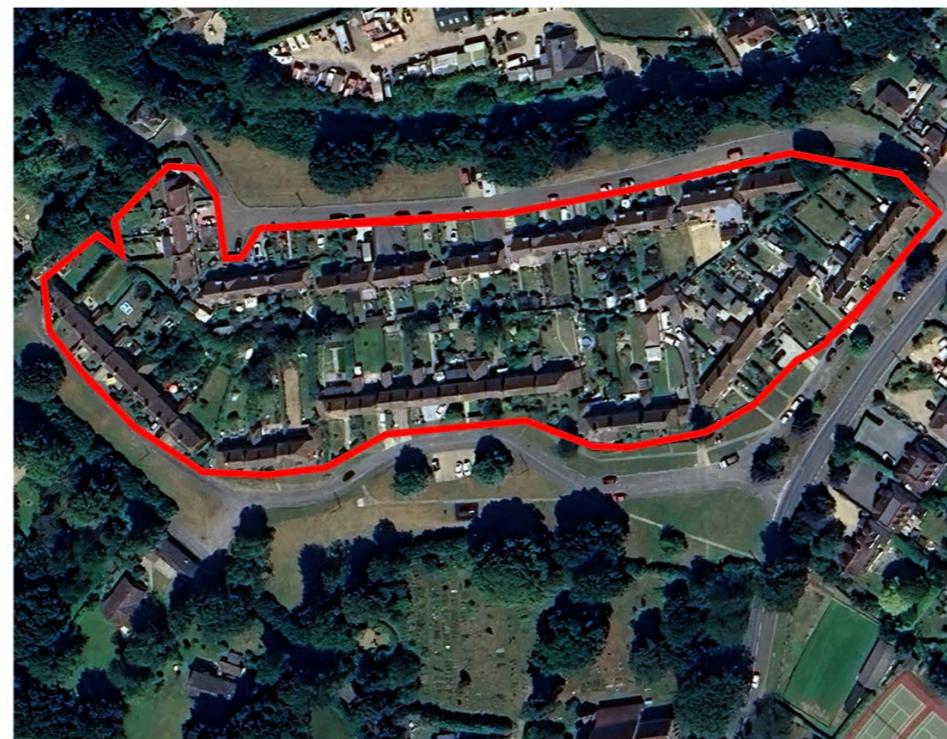
LOCATION - Churchfield, Westfield

Case Study Photography

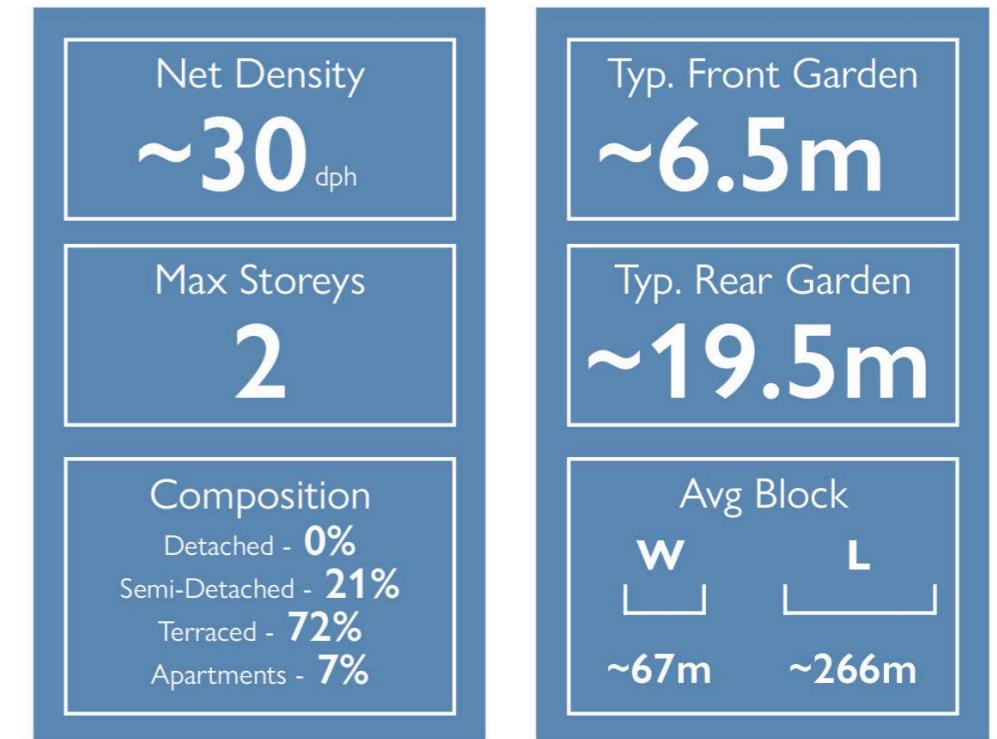
AREA TYPE - Village


Landscape & Historical Development

LIKELY PERIOD: c.1950's – 1960s


Historical Character

- **Evolution:** Early settlement dating back to Saxon times.
- **Domesday Book:** Mentioned in 1086.
- **Historic buildings:** Includes the Norman church of St John the Baptist, Old School House, and a former forge.
- **Listed buildings:** Eleven in total, with a cluster of five in the southeast.
- **Archaeological Notification Areas (ANAs):** Roman roads: Hastings–Brede and Hastings–Ashford routes. Medieval and post-medieval hamlet in the centre-west.
- **Modern heritage:** Local vineyard established in 1976.
- **Location:** Within the High Weald National Landscape (NL), part of the Brede Valley Landscape Character Area.
- **Topography:** Village sits on a north–south plateau with views over the River Brede and Forge Stream.
- **Scenic features:** Managed farmland, historic structures, and wide vistas from surrounding ridges.


Landscape Character

Satellite Context Plan

Detailed Site Plan

Urban Character & Built Form Analysis

LOCATION - High Street, Burwash

Case Study Photography

AREA TYPE - Village

LIKELY PERIOD: c.19th century (c.1800–1900)

Historical Character

- **Evolution:** Burwash has a historic core shaped by 16th–17th century buildings and is well-known as an inland smuggling town.
- **Origins:** Village developed around the historic core, with earlier medieval settlement evidence.
- **Listed buildings:** 67, concentrated in the Conservation Area.
- **Archaeological Notification Areas (ANAs):** Historic core of Burwash is covered by an ANA, reflecting medieval origins.
- **Location:** On east–west ridge, 90m above sea level, wholly within High Weald NL, between Dudwell and Upper Rother valleys.
- **Topography:** Sloping ridge, narrow stream valleys, enclosed pastures, and farmland.
- **Scenic features:** Tree-lined streams, historic hedgerows, oast houses, open views from ridges, linear village form, and accessible footpaths.

Landscape Character

Landscape & Historical Development

Satellite Context Plan

Detailed Site Plan

Net Density
~33 dph

Max Storeys
2.5

Composition
Detached - **5%**
Semi-Detached - **10%**
Terraced - **80%**
Apartments - **5%**

Typ. Front Garden
n/a

Typ. Rear Garden
~30m

Avg Block
W **L**
~53m **~113m**

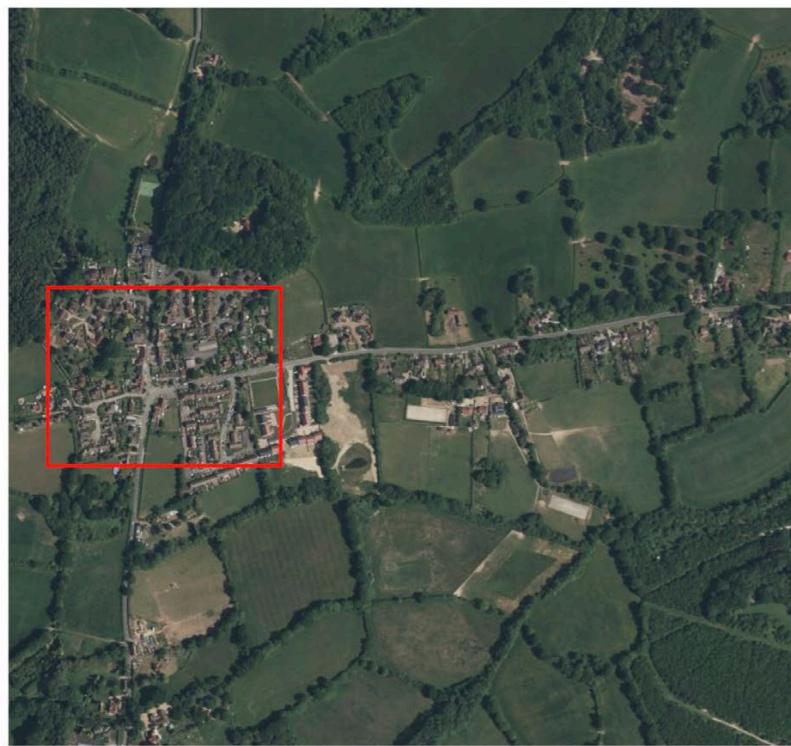
Urban Character & Built Form Analysis

LOCATION - Northiam Rd, Staplecross

Case Study Photography

AREA TYPE - Village

Landscape & Historical Development


LIKELY PERIOD: c.1890's to 1910's

Historical Character

- **Evolution:** Staplecross has a compact historic core shaped by its role as the centre of the Hundred of Staple.
- **Origins:** Central point of the Hundred of Staple, comprising nearby settlements.
- **Historic buildings:** Traditional High Weald white weatherboard cottages; oast houses on farmsteads, many converted to houses.
- **Listed buildings:** 19, mainly around the crossroads, with some farm buildings to the east.
- **Archaeological Notification Areas (ANAs):** Areas around the crossroads linked to the Hastings to Ashford Roman road.

Landscape Character

- **Location:** High ground south of the Lower Rother Valley LCA, within High Weald NL.
- **Topography:** Village perched on ridgeline overlooking valley; unspoilt farmland and ancient woodland.
- **Scenic features:** Broad valley views, scattered ancient woodland, compact historic settlement at crossroads.

Satellite Context Plan

Detailed Site Plan

Net Density
~37 dph

Max Storeys
2

Composition
Detached - 9.1%
Semi-Detached - 45.4%
Terraced - 36.4%
Apartments - 9.1%

Typ. Front Garden
~7.5m

Typ. Rear Garden
~10m

Avg Block
W ~43m L ~59m

Urban Character & Built Form Analysis

LOCATION - Coronation Gardens, Hurst Green

Case Study Photography

AREA TYPE - Village

LIKELY PERIOD: c.1950's – 1960s

Historical Character

- **Evolution:** Hurst Green has a long history shaped by strategic, industrial, and transport-related activity.
- **Origins:** Part of Salehurst parish; Burgh Hill may have hosted an Anglo-Saxon fort; Roman-era Wealden iron industry.
- **Historic buildings:** Grade 1 listed Haremere Hall (early 17th century).
- **Listed buildings:** 26, mainly along main north-south and east-west routes.
- **Location:** Ridgetop position within High Weald NL, part of eastern boundary of Upper Rother Valley LCA.
- **Topography:** North-south ridge, open valley floor, sunken lanes, farmland, and woodland.
- **Scenic features:** Linear ghyll woods, Burgh Wood, long valley views, well-treed hedgerows, historic farmland structure.

Landscape Character

Landscape & Historical Development

Satellite Context Plan

Detailed Site Plan

Net Density
~40 dph

Max Storeys
2

Composition
Detached - **0%**
Semi-Detached - **0%**
Terraced - **100%**
Apartments - **0%**

Typ. Front Garden
~6.5m

Typ. Rear Garden
~12m

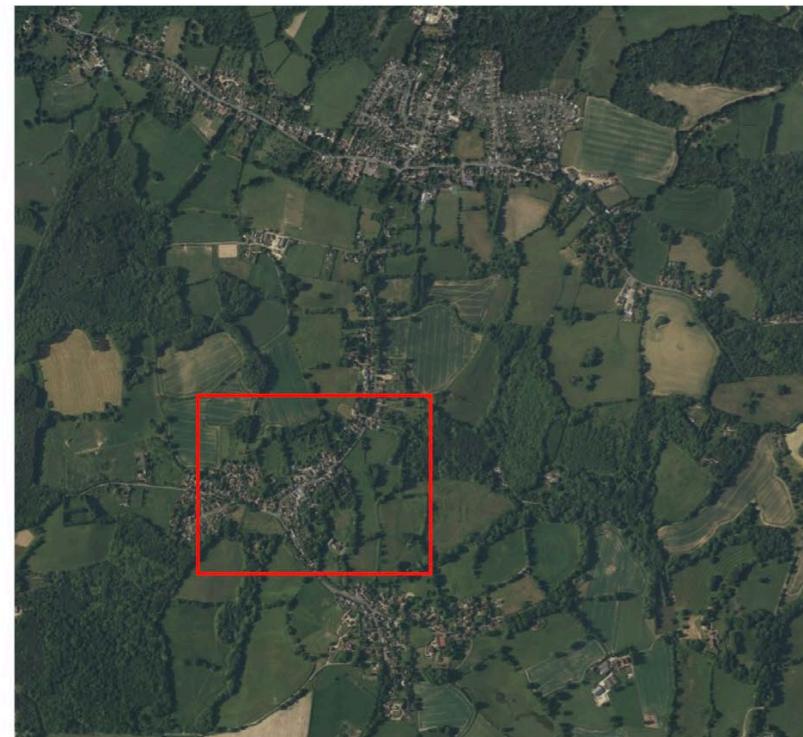
Avg Block
W **L**
~67m **~120m**

Urban Character & Built Form Analysis

LOCATION - Oakfield Cottages, Cackle St.

Case Study Photography

AREA TYPE - Village


LIKELY PERIOD: c.1880s – 1890s

Historical Character

- **Evolution:** Broad Oak has predominantly modern development with limited historic character.
- **Historic buildings:** Few historic features survive within the village.
- **Listed buildings:** 8, mostly adjacent to Udimore Road east of the crossroads.
- **Location:** Within High Weald NL, Brede Valley LCA.
- **Topography:** Village on a crest; flat valley floor enclosed by steep slopes; surrounding rolling countryside and ridge-top plateau.
- **Scenic features:** Wide vistas over the Brede Valley, extensive semi-natural ancient woodland, orchards, footpaths, open pastures, ribbon development, and notable long-distance views to the south and east.

Landscape Character

Landscape & Historical Development

Satellite Context Plan

Detailed Site Plan

Net Density
~41 dph

Max Storeys
2

Composition
Detached - **0%**
Semi-Detached - **22.2%**
Terraced - **77.8%**
Apartments - **0%**

Typ. Front Garden
~4.5m

Typ. Rear Garden
~9.5m

Avg Block
W L
~25m **~68m**

Urban Character & Built Form Analysis

LOCATION - Eagle Road, Rye

Case Study Photography

AREA TYPE - Urban

LIKELY PERIOD: c.1890s - 1900s

Historical Character

- **Evolution:** Rye is a nationally important citadel town with high architectural and historic value, reflecting its medieval and maritime significance.
- **Origins:** Developed as a defensible settlement with easy sea access; part of the Cinque Ports in the 11th century.
- **Historic buildings:** Compact medieval core with strong street patterns and ancient defences, including the old town wall and Ypres Tower.
- **Listed buildings:** Over 300 listed buildings; core designated as a Conservation Area.
- **Location:** Citadel on sandstone hill at the confluence of the Rivers Rother, Brede, and Tillingham; straddles Rye-Winchelsea LCA, Lower Rother Valley LCA, and Brede Valley LCA.
- **Topography:** Ridge above floodplain with flat surrounding marshes and rivers.
- **Scenic features:** Fine views to coast and landscape; tidal rivers, estuary, grazing marshes, reed-fringed ditches; buffer areas between the built-up edge and NL.

Landscape Character

Landscape & Historical Development

Satellite Context Plan

Detailed Site Plan

Net Density
~45 dph

Max Storeys
2.5

Composition
Detached - **0%**
Semi-Detached - **0%**
Terraced - **70.4%**
Apartments - **29.6%**

Typ. Front Garden
~1m

Typ. Rear Garden
~8m

Avg Block
W L
~58m **~47m**

Urban Character & Built Form Analysis

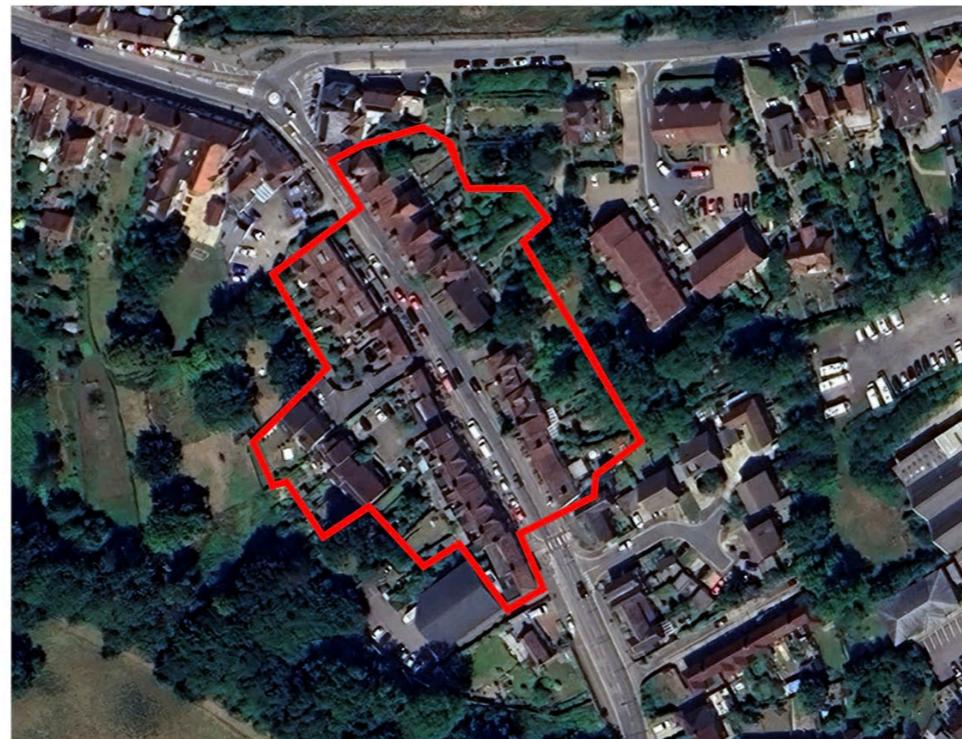
LOCATION - Lower Lake, Battle

Case Study Photography

AREA TYPE - Urban

LIKELY PERIOD: c.1800-1900s

Historical Character


- **Evolution:** Historic market town shaped by the 1066 Battle of Hastings and later medieval, Georgian, and modern development.
- **Origins:** Originated around the Abbey of St Martin (founded 1071).
- **Key buildings:** Abbey, St Mary's Church (12th century), Almonry (1090), Georgian High Street houses. 176 listed buildings, including Pilgrims Rest, Kings Head Inn, and Battle Station.
- **Archaeological Notification Areas:** Cover central/southwest town and the battlefield, also part of a Conservation Area.
- **Location:** In the High Weald National Landscape, bordered by Combe Haven Valley, Brede Valley, and South Slopes.
- **Topography:** Features sandstone ridges, wooded slopes, winding valleys, and flat valley floors.
- **Scenic assets:** Ancient woodland, ghylls, farmsteads, South Downs views, and Registered Battlefield parkland.

Landscape Character

Landscape & Historical Development

Satellite Context Plan

Detailed Site Plan

Net Density
~52 dph

Max Storeys
2.5

Composition
Detached - 1.9%
Semi-Detached - 3.8%
Terraced - 82.7%
Apartments - 11.6%

Typ. Front Garden
~3m

Typ. Rear Garden
~10m

Avg Block
W ~67m L ~102m

Urban Character & Built Form Analysis

LOCATION - Fair Lane, Robertsbridge

Case Study Photography

AREA TYPE - Village

LIKELY PERIOD: c.1800-1910s

Historical Character

- **Evolution:** Robertsbridge has a rich industrial and monastic heritage, with development shaped by the Abbey and river-based trades.
- **Origins:** Founded in the early 13th century.
- **Historic buildings:** Post Office, Ostrich Hotel, cottages, historic farmhouses; linked to St. Mary's Church in Salehurst.
- **Listed buildings:** 105, nearly all in the historic core.
- **Archaeological Notification Areas (ANAs):** Village core designated a Conservation Area and covered by an ANA.
- **Location:** Within the High Weald NL; between Upper Rother Valley and Lower Rother Valley.
- **Topography:** Broad valley floor overlooked by ridges and spurs, ancient woodland to east and west.
- **Scenic features:** Pasture, arable land, winding tree-lined rivers, ghyll woods, floodplain, and historic village edges forming high-value, sensitive landscape.

Landscape Character

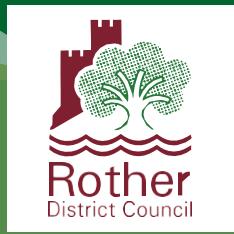
Landscape & Historical Development

Satellite Context Plan

Detailed Site Plan

Net Density
~54 dph

Max Storeys
2.5


Composition
Detached - **6.9%**
Semi-Detached - **10.3%**
Terraced - **79.4%**
Apartments - **3.4%**

Typ. Front Garden
~0.5m

Typ. Rear Garden
~12m

Avg Block
W ~22m **L ~182m**

Urban Character & Built Form Analysis

Rother District Council

Town Hall
London Road
Bexhill-on-Sea
East Sussex
TN39 3JX